
www.alpinebits.org

AlpineBits is an interface specification for exchanging data in the tourism sector,
specially tailored for alpine tourism.

The interface is based on XML messages that validate against version 2015A
of the OpenTravel Schema by the OpenTravel Alliance.

© AlpineBits Alliance. This document is licensed under the
Creative Commons Attribution-NoDerivs 3.0 Unported License 0.

Permissions beyond the scope of this license may be available at www.alpinebits.org

AlpineBits 2015-07b page 1 of 71

http://www.alpinebits.org/


Disclaimer

This specification is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY.

If you find errors or you have proposals for enhancements, do not hesitate to contact us using the online 
discussion group: https://groups.google.com/forum/#!forum/alpinebits.

About the AlpineBits Alliance

The “AlpineBits Alliance” is a group of SME operating in the touristic sector working together to innovate 
and open the data exchange in the alpine tourism, and therefore to optimize the online presence, sales 
and marketing efforts of the hotels and other accommodations in the alpine territory and also worldwide.

AlpineBits Alliance
Via Bolzano 63/A
39057 Frangarto / Appiano s.s.d.v. (BZ) - ITALY
VAT Reg No: IT02797280217
www.alpinebits.org
info@alpinebits.org

AlpineBits Alliance Members
Altea Software Srl - www.altea.it
aries.creative KG - www.ariescreative.com
ASA OHG - www.asaon.com
Athesia Druck GmbH - www.sentres.com
Brandnamic GmbH - www.brandnamic.com
Dolomiti.it Srl - www.dolomiti.it
GardenaNet snc - www.gardena.net
HGV - www.hgv.it
Internet Consulting GmbH - www.inetcons.it
LTS - www.lts.it
Marketing Factory GmbH - www.marketingfactory.it
MM-One Group Srl - www.mm-one.com
PCS Hotelsoftware GmbH - www.pcs-phoenix.com
Peer GmbH - www.peer.biz
Rateboard GmbH - www.rateboard.info
Schneemenschen GmbH - www.schneemenschen.de
SiMedia GmbH - www.simedia.com
trick17.media OHG - www.trick17.it
Vioma GmbH - www.vioma.de

Author of this document:
Chris Mair - www.1006.org

Special thanks to IDM Südtirol - Alto Adige - www.idm-suedtirol.com

AlpineBits 2015-07b page 2 of 71

mailto:info@alpinebits.org
http://www.alpinebits.org/
https://groups.google.com/forum/#!forum/alpinebits


Document Change Log

Important note: make sure to have the latest version of this document! The latest version is available 
from http://www.alpinebits.org.

protocol 
version

doc. release 
date

description

2015-07b 2016-08-01 Status:
● official release

Updates and additions:
● RatePlans: Section 4.5 has been rewritten to clarify details that the previous 

version just skipped over, including a detailed description of the price calculation 
algorithm

● RatePlans: new optional capability OTA_HotelRatePlanNotif_accept_RatePlanJoin 
to allow displaying alternative treatments for the same price list

● Schemas updates and validation: explicitly forbid some values (e.g. base prices of 
0 EUR) and limit length of some attributes

● Minor fixes and clarifications

2015-07 2015-10-28 Status:
● official release

Updates and additions:
● OTA compatibility: version 2015A is now used
● some rewrite of the text to add more clarity 
● GuestRequests: a series to modifications and additions to make it more flexible 

especially for reservations
● GuestRequests: added refusals (warnings)
● GuestRequests: added booking modifications (ResStatus = 'Modify')
● RatePlans: changes to capabilities
● RatePlans: some clarifications and small additions 
● RatePlans: partial rewrite and better explanation of Supplements
● RatePlans: added the explicit response messages
● Inventory: changes to capabilities
● Inventory: replaced by OTA_HotelDescriptiveContentNotifRQ
● Inventory: added possibility to send multimedia content
● Inventory: added additional descriptive content that may be sent separately from 

the basic data

2014-04 2014-12-23 Status:
● official release with minor errata fixed
● section 4.2.3.: the example was not correct about the fact that the presence of a 

SelectionCriteria Start requires the server to send the list of inquiries again, 
regardless whether the client has retrieved them before or not (example fixed and 
misleading sentence removed)

● section 4.1.1: the document did not mention that it is allowed to send a single 
empty AvailStatusMessage element in a CompleteSet request to reset the room 
availabilities in a given Hotel - the empty AvailStatusMessage is required for OTA 
compatibility (this special case is now explicitly mentioned)

● section 4.12: in the table at the end of the section the code for “Invalid hotel” was 
wrongly given as 61 instead of 361 (typo fixed)

● section 4.5.2:  the document did not mention that it is allowed to send a single 
empty RatePlan element in a CompleteSet request to reset the rate plans in a 
given Hotel - the empty RatePlan is required for OTA compatibility (this special 
case is now explicitly mentioned)

2014-04 2014-10-15 Status:
● official release

AlpineBits 2015-07b page 3 of 71



Updates and additions:
● this is a major overhaul of AlpineBits - see section B.3. for a list of breaking 

changes, updates and additions
● New section: Inventory - room category information
● New section: RatePlans

2013-04 2013-05-24 Status:
● official release

Updates:
● Section 2 (HTTPS layer): added information regarding the new  X-AlpineBits-

ClientID and X-AlpineBits-ClientProtocolVersion fields in the HTTP header
● Section 3.2 (capabilities): added capability for FreeRoom deltas
● Section 4 (Intro): changed the text a bit to make it clearer that AlpineBits does 

indeed support booking requests and not only requests for quotes
● Section 4.1 (FreeRooms): added the possibility to send partial information (deltas); 

added warning response; much improved description of the response in general
● Section 4.2 (GuestRequests): slightly improved the description of the response in 

case of error
● Section 4.3 (Simple Packages): added limitation (just one Hotel per request); 

added warning response; much improved description of the response in general; 
clarified text to explicitly state that it is not allowed to mix package add and delete 
requests in a single message

● Appendix A (example code): this document should be language neutral so the code 
that used to be here has been removed with a message to check the official 
AlpineBits site (with the current release the code is still in the documentation kit, 
however)

● Appendix B (compatibility matrix): new appendix

2012-05b 2012-10-01 Status:
● official release

Updates:
● OTA compatibility: the attribute Thu is renamed to Thur and the attribute Wed is 

renamed to Weds
● SimplePackages: the element Image is listed as mandatory in the table as it 

already was in the text and schema files
● SimplePackages: The element RateDescription is listed as non-repeatable in 

the table as it already was in the text and schema files

2012-05 2012-05-31 Status:
● official release

Updates:
● major rewrite of the text
● FreeRooms: action OTA_HotelAvailNotif is no longer mandatory

Additions:
● GuestRequests: reservation inquiries
● SimplePackages: package availability notifications

2011-11 2011-11-18 Minor alterations and release under Creative Commons Attribution-NoDerivs 3.0 Unported 
License

2011-10 2011-10-20 production release with minor alterations

2011-09 2011-09-08 first draft of redesigned version (using POST instead of SOAP)

2010-10 2010-10-20 second draft

2010-08 2010-08-01 first draft

AlpineBits 2015-07b page 4 of 71



Table of Contents
1. Introduction 7
2. The HTTPS request and response structure 8

2.1. Implementation tips and best practice 9
3. Housekeeping actions 10

3.1. Query the server version 10
3.2. Query the server capabilities 10
3.3. Unknown or missing actions 12
3.4. Implementation tips and best practice 12

4. Data exchange actions 13
4.1. FreeRooms: room availability notifications 15

4.1.1 Client request 15
4.1.2. Server response 17

Success 17
Advisory 17
Warning 18
Error 19

4.1.3. Implementation tips and best practice 20
4.2. GuestRequests: quote requests, booking reservations and cancellations 21

4.2.1. First client request 21
4.2.2 Server response 22

Error 22
Success 22

4.2.3. Follow-up client request (acknowledgement) 29
4.2.4. Follow-up server response 31
4.2.5. Implementation tips and best practice 31

4.3. SimplePackages: package availability notifications 32
4.3.1. Client Request (notify package availability) 32
4.3.2. Client request (notify that a package is no longer available) 37
4.3.3. Server response 38

Success 38
Advisory 38
Warning 39
Error 40

4.3.4. Implementation tips and best practice 40
4.4. Inventory: room category information 41

4.4.1. Client request 41
Basic and additional descriptive content 44

4.4.2. Server response 46
Success 46
Advisory 46
Warning 47
Error 48

4.4.3. Implementation tips and best practice 48
4.5. RatePlans 49

4.5.1. Client request 49
Booking rules 51
Rates 52
Supplements 54
Offers 56

AlpineBits 2015-07b page 5 of 71



4.5.2. Computing the cost of a stay 58
Step 1 (occupancy check) 58
Step 2 (transformation) 58
Step 3 (family offers) 59
Step 4a (restrictions check) 59
Step 4b (compute cost) 59

4.5.3. Synchronization 61
4.5.4. Server response 62

Success 62
Advisory 62
Warning 63
Error 63

4.5.4. Implementation tips and best practice 64
A. AlpineBits developer resources 66
B. Protocol Version Compatibility 67

B.1. Minor updates in version 2015-07b 67
B.2. Major overhaul in version 2015-07 67

Inventory 67
B.3. Major overhaul in version 2014-04 68

HTTPS layer 68
FreeRooms 68
GuestRequests 68
SimplePackages 68
Inventory and RatePlans 68

B.4. Compatibility between a 2012-05b client and a 2013-04 server 68
B.5. Compatibility between a 2013-04 client and a 2012-05b server 69

C. Links 71

AlpineBits 2015-07b page 6 of 71



1. Introduction
This documents describes a standard for exchanging traveling and booking information, called 
AlpineBits.

AlpineBits builds upon established standards:

●client-server communication is done through stateless HTTPS (the client POSTs data to the server 
and gets a response) with basic access authentication1 and
●the traveling and booking information are encoded in XML following version 2015A of the 
OpenTravel Schema 3, 4, 5 (from here on called OTA2015A) by the OpenTravel Alliance 2.

At the current version of the standard, the scope of AlpineBits covers exchanging the following types of 
information:

● room availability (FreeRooms),
● reservation inquiries (GuestRequests),
● package availability (SimplePackages),
● room category information (Inventory) and
● prices (RatePlans).

AlpineBits relies on its underlying transport protocol to take care of security issues. Hence the use of 
HTTPS is mandatory.

AlpineBits 2015-07b page 7 of 71



2. The HTTPS request and response structure

An AlpineBits compliant server exposes a single HTTPS URL. Clients send POST requests to that URL.

The POST request must transmit the access credentials using basic access authentication.

The HTTPS header of the POST request must contain an X-AlpineBits-ClientProtocolVersion field. The 
value of this field is the protocol version supported by the client (see the first column of the changelog 
table). A server that does not receive the field will simply conclude that the client speaks a protocol 
version preceding the version when this field was introduced (2013-04).

The HTTPS header of the POST request may contain an X-AlpineBits-ClientID field. The value of this 
field is an arbitrary string a server implementer might want to use to identify the client software version 
or installation ID.

The POST request must follow the multipart/form-data encoding scheme, as commonly used in the 
context of HTML forms for file uploads.

The POST request may be compressed using the gzip algorithm, in which case the HTTP request 
header Content-Encoding must be present and have "gzip" as value. A POST request compressed with 
gzip must be compressed by the client in its entirety (i.e. the whole message must be compressed, not 
the single parts of the multipart/form-data content). It is a client responsibility to check whether the server 
supports content compression, this is done by checking the value of the HTTP response header X-
AlpineBits-Server-Accept-Encoding which is set to "gzip" by servers who support this feature. The so 
called "Housekeeping" actions must not be compressed.

The POST requests must have at least one parameter named action. Depending on the value of 
action, one additional parameter named request might be required.

Following is a capture of an example POST. In this example, the value of action is the string 
OTA_HotelAvailNotif, indicating the client wishes to perform a room availability notification. The 
value of request is an XML document (not fully shown).

POST / HTTP/1.1
Authorization: Basic Y2hyaXM6c2VjcmV0
Host: localhost
Accept: */*
X-AlpineBits-ClientProtocolVersion: 2015-07
X-AlpineBits-ClientID: sample-client.php v. 2015-07 1.0
Content-Length: 1989
Expect: 100-continue
Content-Type: multipart/form-data; boundary=----------------------------9d7042ecb251

------------------------------9d7042ecb251
Content-Disposition: form-data; name="action"

OTA_HotelAvailNotif:FreeRooms
------------------------------9d7042ecb251
Content-Disposition: form-data; name="request"

<?xml version="1.0" encoding="UTF-8"?>

<OTA_HotelAvailNotifRQ
         [...]
</OTA_HotelAvailNotifRQ>
------------------------------9d7042ecb251--

Note the Authorization field, with the username/password string (chris:secret) encoded in base64 
(Y2hyaXM6c2VjcmV0) as defined by the basic access authentication standard 1.

Also note the X-AlpineBits-ClientProtocolVersion and X-AlpineBits-ClientID fields and the multipart 
content with the values of parameters action and request.

AlpineBits 2015-07b page 8 of 71



As a result of the POST request, the server answers with a response. Of course, the content of the 
response depends on the POSTed parameters, in particular the value of action. AlpineBits currently 
identifies two kinds of actions: the so-called housekeeping actions explained in section 3 and the actual 
data exchange actions explained in section 4.

The expected status code of the response is 200 (Ok), indicating that the server could authenticate the 
user (with or without being able to actually process any action).

In case of authentication failure (either an invalid or missing username/password or a value of X-
AlpineBits-ClientID that is not acceptable to the server) the status code is 401 (Authorization Required) 
and the content is ERROR, followed by a colon (:) and an error message indicating the reason for the 
failure, such as no username/password was provided or the password expired, etc. Regarding the X-
AlpineBits-ClientID, a server chooses to require the ID or to ignore the ID. If the server chooses to ignore 
the ID, it must do so silently, i.e. it must not return a 401 status because of the presence of the ID.

In case of internal server problem the status code is 500 (Internal Server Error).

A server that has not announced support for requests compressed with gzip may return the status code 
501 (not implemented) in case it receives such requests.

An AlpineBits client must be able to handle these status codes. It should retry a request that has failed 
(error code 500 or timeout) and only escalate the failure after 2 retries with an appropriate delay.

2.1. Implementation tips and best practice

● For maximum compatibility across different implementations AlpineBits implementers are asked 
to handle POST requests using a supporting API in their language of choice. See appendix A for 
examples.

● All POSTs to an AlpineBits server are sent to a single URL. However, a server implementer might 
make more than one URL available for independent servers, such as servers with support for 
different versions:

○ https://server.example.com/alpinebits/2011-11
○ https://server.example.com/alpinebits/2012-05b
○ etc…

● Gzip compression can make request smaller by a factor of ten, therefore it was introduced in 
AlpineBits even though its usage in the POST requests is rare (far more than in the responses). 
According to the various RFCs compressing the requests is not forbidden, but there are no 
implementation recommendations; it was therefore chosen to use an approach that major web 
servers were already supporting at the time of this writing.

AlpineBits 2015-07b page 9 of 71



3. Housekeeping actions
These actions allow the client to query the server version and capabilities. An AlpineBits server must be 
able to handle both.

It is the client's responsibility to ensure the server can handle the actions it intends to perform. Clients 
are therefore invited to query the server’s capabilities before performing the data exchange actions 
described in section 4.

The following table lists all available housekeeping actions.

usage mandatory
available 

since 
version

parameter action
(string)

parameter 
request
(string)

server response
(string)

a client queries 
the server version YES 2011-11 getVersion (not sent) the server version

a client queries 
the server 
capabilities

YES 2011-11 getCapabilities (not sent) the server capabilities

3.1. Query the server version

A client performs this action to query the server version. The values of action is the string 
getVersion. The parameter request is not specified.

The response content is the string OK: followed by the protocol version supported by the server (see the 
first column of the changelog table, e.g. 2011-11 for the first release version of AlpineBits).

3.2. Query the server capabilities

A client performs this action to query the server capabilities. The values of action is the string 
getCapabilities. The parameter request is not specified. Please note that these requests must be 
sent in plain text i.e. not compressed using gzip, even when the server supports compressed requests.

The response is a string starting with OK: followed by a list of comma separated tokens each of which 
indicates a single capability of the server.

AlpineBits specifies the following capabilities:

●action_getVersion
the server implements the getVersion action

●action_getCapabilities
the server implements the getCapabilities action

●action_OTA_HotelAvailNotif
the server implements handling room availability notifications (FreeRooms)

●OTA_HotelAvailNotif_accept_rooms
for room availability notifications (FreeRooms), the server accepts booking limits for specific rooms

●OTA_HotelAvailNotif_accept_categories
for room availability notifications (FreeRooms), the server accepts booking limits for categories of 
rooms

AlpineBits 2015-07b page 10 of 71



●OTA_HotelAvailNotif_accept_deltas
for room availability notifications (FreeRooms), the server accepts partial information (deltas)

●action_OTA_Read
the server implements handling quote requests, booking reservations and cancellations 
(GuestRequests)

●action_OTA_HotelRatePlanNotif
the server implements handling package availability notifications (SimplePackages)

●action_OTA_HotelDescriptiveContentNotif_Inventory
the server implements handling room category information (Inventory)

●OTA_HotelDescriptiveContentNotif_Inventory_use_rooms
for room category information (Inventory), the server needs information about specific rooms

●OTA_HotelDescriptiveContentNotif_Inventory_occupancy_children
for room category information (Inventory), the server supports applying children rebates also for 
children below the standard occupation

●OTA_HotelDescriptiveContentNotif_Inventory_accept_basic
for room category information (Inventory), the server accepts the main inventory information and 
basic descriptions from this client

●OTA_HotelDescriptiveContentNotif_Inventory_accept_additional
for room category information (Inventory), the server accepts the additional descriptions from this 
client

●action_OTA_HotelRatePlanNotif_RatePlans
the server implements handling prices (RatePlans)

●OTA_HotelRatePlanNotif_accept_MinLOS
for prices (RatePlans), the server accepts MinLOS restrictions in booking rules

●OTA_HotelRatePlanNotif_accept_MaxLOS
for prices (RatePlans), the server accepts MaxLOS restrictions in booking rules

●OTA_HotelRatePlanNotif_accept_ArrivalDOW
for prices (RatePlans), the server accepts arrival DOW restrictions in booking rules

●OTA_HotelRatePlanNotif_accept_DepartureDOW
for prices (RatePlans), the server accepts departure DOW restrictions in booking rules

●OTA_HotelRatePlanNotif_accept_RatePlan_BookingRule
for prices (RatePlans), the server accepts “generic” booking rules

●OTA_HotelRatePlanNotif_accept_RatePlan_RoomType_BookingRule
for prices (RatePlans), the server accepts “specific” booking rules for the given room types

●OTA_HotelRatePlanNotif_accept_RatePlan_mixed_BookingRule
for prices (RatePlans) and within the same rate plan, the server accepts both “specific” and 
“generic” booking rules. Both "generic" and "specific" rules capabilities must still be announced by 
the server.

●OTA_HotelRatePlanNotif_accept_Supplements
for prices (RatePlans), the server accepts supplements

●OTA_HotelRatePlanNotif_accept_FreeNightsOffers
for prices (RatePlans), the server accepts free nights offers

AlpineBits 2015-07b page 11 of 71



●OTA_HotelRatePlanNotif_accept_FamilyOffers
for prices (RatePlans), the server accepts family offers

●OTA_HotelRatePlanNotif_accept_overlay
for prices (RatePlans), the server accepts the rate plan notif type value Overlay

●OTA_HotelRatePlanNotif_accept_RatePlanJoin
for prices (RatePlans), the server supports grouping RatePlans with different MealPlanCodes under 
a single price list

AlpineBits requires a server to support at least all mandatory housekeeping actions.

All other capabilities are optional. It is a client's responsibility to check for server capabilities before 
trying to use them. A server implementation is free to ignore information that requires a capability it 
doesn't declare. A server must, however, implement all capabilities it declares.

3.3. Unknown or missing actions

Upon receiving a request with an unknown or missing value for action, the server response is the string: 
ERROR:unknown or missing action.

3.4. Implementation tips and best practice

● Since the getCapabilities request is authenticated it’s possible for a server to announce different 
capabilities to different users.

● OTA requires the root element of an XML document to have a version attribute. As regards 
AlpineBits, the value of this attribute is irrelevant.

AlpineBits 2015-07b page 12 of 71



4. Data exchange actions
These actions allow the actual exchange of data between client and server.

The parameter request is mandatory. Both, the client request and the server response are XML 
documents following OTA2015A as specified in the following table.

known as usage
since 

version
parameter action
(string)

parameter request
(XML document)

server response
(XML document)

FreeRooms a client sends 
room availability 
notifications to a 
server

2011-11
OTA_HotelAvailNoti
f:FreeRooms OTA_HotelAvailNotifRQ OTA_HotelAvailNotifRS

GuestRequests a client sends a 
request to receive 
requests for a 
quote or booking 
requests from the 
server

2012-05
OTA_Read:GuestRequ
ests OTA_ReadRQ OTA_ResRetrieveRS

GuestRequests
(ack’s)

a client 
acknowledges the 
requests it has 
received

2014-04
OTA_NotifReport:Gu
estRequests OTA_NotifReportRQ OTA_NotifReportRS

SimplePackages a client sends 
package 
availability 
notifications to a 
server

2012-05
OTA_HotelRatePlanN
otif:SimplePackage
s

OTA_HotelRatePlanNotifRQ OTA_HotelRatePlanNotifRS

Inventory a client sends 
room category 
(inventory) 
information

2015-07

OTA_HotelDescripti
veContentNotif:Inv
entory

OTA_HotelDescriptiveConte
ntNotifRQ

OTA_HotelDescriptiveConten
tNotifRS

RatePlans a client sends 
information about 
rate plans with 
prices and 
booking rules

2014-04
OTA_HotelRatePlanN
otif:RatePlans OTA_HotelRatePlanNotifRQ OTA_HotelRatePlanNotifRS

AlpineBits requires all XML documents to be encoded in UTF-8.

The business logic of an AlpineBits server, i.e. how the server processes and stores the information it 
receives is implementation-specific.

The format of the requests and responses is, however, exactly specified.

First of all the requests and responses must validate against the OTA2015A schema.

Since OTA is very flexible regarding mandatory / optional elements, AlpineBits adds extra requirements 
about exactly which elements and attributes are required in a request.

If these are not present, a server’s business logic is bound to fail and will return a response indicating an 
error even though the request is valid OTA2015A.

OTA2015A, for instance allows OTA_HotelAvailNotifRQ requests that do not indicate the hotel, this might 
make perfect sense in some context, but an AlpineBits server will return an error if that information is 
missing from the request.

To aid developers, an AlpineBits XML Schema file and a set of Relax NG files are provided as an integral 
part of the specification in the AlpineBits documentation kit.

AlpineBits 2015-07b page 13 of 71



The Relax NG file set is stricter than the XML schema file. First, there is a RelaxNG file for each request 
and response type, so the nodes can be validated in a more specific way. Second, RelaxNG is 
intrinsically more powerful in expressing constraints that express how elements and attributes depend on 
each other.

Both, the XML Schema file and the Relax NG files, are stricter than OTA2015A in the sense that all 
documents that validate against AlpineBits will also validate against OTA2015A, but not vice versa.

The AlpineBits documentation kit also provides a sample file for each of the request and response 
documents.

The latest AlpineBits documentation kit for each protocol version is available from the official AlpineBits 
website.

AlpineBits 2015-07b page 14 of 71



4.1. FreeRooms: room availability notifications

When the value of the action parameter is OTA_HotelAvailNotif:FreeRooms the client intends to 
send room availability notifications to the server.

A server that supports this action must support at least one of two capabilities: 
OTA_HotelAvailNotif_accept_rooms or OTA_HotelAvailNotif_accept_categories. This 
way the server indicates whether it can handle the availability of rooms at the level of distinct rooms, at 
the level of categories of rooms or both.

4.1.1 Client request
The parameter request must contains an OTA_HotelAvailNotifRQ document.

Clients and servers typically wish to exchange only delta information about room availabilities in order to 
keep the total amount of data to be processed in check.

However, for simplicity let us first consider a request where the client transmits the complete availability 
information as might be the case for a first synchronization.

Consider the outer part of the example document:

<?xml version="1.0" encoding="UTF-8"?>

<OTA_HotelAvailNotifRQ
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
        xmlns="http://www.opentravel.org/OTA/2003/05"
        xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_HotelAvailNotifRQ.xsd"
        Version="1.002">

    <UniqueID Type="16" ID="1" Instance="CompleteSet"/>

    <AvailStatusMessages HotelCode="123" HotelName="Frangart Inn">7

        <!-- ... see below ... -->

    </AvailStatusMessages>

</OTA_HotelAvailNotifRQ>

samples/FreeRooms-OTA_HotelAvailNotifRQ.xml - outer part

An OTA_HotelAvailNotifRQ may contain just one AvailStatusMessages (note the plural) element, 
hence at most one hotel can be dealt with in a single request.

The UniqueID element with attribute Instance = CompleteSet indicates that this message contains the 
complete information. When receiving such a request, a server must remove all information about any 
availability it might have on record regarding the given hotel.

If the UniqueID element is missing, the message contains delta information. In that case the server 
updates only the information that is contained in the message without touching the other information that 
it has on record.

AlpineBits requires the attributes HotelCode or HotelName to be present (and match information in the 
server's database). The fictitious hotel in the example is the "Frangart Inn" with code "123". Specifying 
both — code and name — is redundant, but allowed, as long as both are consistent.

AlpineBits requires a match of HotelCode, HotelName to be case sensitive.

Second, consider the inner part of the example that contains AvailStatusMessage (note the singular) 
elements for three different rooms.

AlpineBits 2015-07b page 15 of 71



Let's start with the availabilities for room 101S.

<AvailStatusMessage BookingLimit="1" BookingLimitMessageType="SetLimit">

    <StatusApplicationControl Start="2010-08-01" End="2010-08-10"
                              InvTypeCode="double" InvCode="101S" />

</AvailStatusMessage>

<AvailStatusMessage BookingLimit="1" BookingLimitMessageType="SetLimit">

    <StatusApplicationControl Start="2010-08-21" End="2010-08-30"
                              InvTypeCode="double" InvCode="101S" />

</AvailStatusMessage>

samples/FreeRooms-OTA_HotelAvailNotifRQ.xml - inner part

The use of the InvCode attribute tells us we're dealing with a specific room (101S) that belongs to the 
room category given by the InvTypeCode (double).

Alternatively, using a InvTypeCode without a InvCode attribute would indicate that the availability 
refers to a category of rooms, not a specific room.

AlpineBits requires a match of InvCode or InvTypeCode to be case sensitive.

An AlpineBits server must be able to treat at least one case out of the two cases (specific rooms or 
categories). A client should perform the getCapabilities action to find out whether the server treats 
the room case (token OTA_HotelAvailNotif_accept_rooms), the category case (token 
OTA_HotelAvailNotif_accept_categories) or both.

Mixing rooms and categories in a single request is not allowed. An AlpineBits server must return an 
error if it receives such a mixed request.

The attribute Start and End indicate that room 101S is available from 2010-08-01 to 2010-08-10 and 
from 2010-08-21 to 2010-08-30.

Regarding the first interval, this means the earliest possible check-in is 2010-08-01 afternoon and latest 
possible check-out is 2010-08-11 morning (maximum stay is 10 nights).

Since there are no further restrictions, check-ins after 2010-08-01 and stays of less than 10 nights are 
allowed as well, provided the check-out is not later than 2010-08-11 morning.

Idem for the other block of 10 nights from 2010-08-21 to 2010-08-30 (latest check-out is 2010-08-31 
morning).

Since a specific room is indicated here, the only meaningful value of BookingLimit is 0 or 1 (the same 
room can not be available more than once). In the category case, numbers larger than 1 would also be 
allowed.

BookingLimit numbers are always interpreted to be absolute numbers. Differential updates are not 
allowed.

Note that AlpineBits does not allow AvailStatusMessage elements with overlapping periods. This 
implies that the order of the AvailStatusMessage elements doesn't matter. It is a client's 
responsibility to avoid overlapping. An AlpineBits server's business logic may identify overlapping and 
return an error or may proceed in an implementation-specific way.

AlpineBits 2015-07b page 16 of 71



AlpineBits requires the AvailStatusMessage element to have attributes BookingLimit and 
BookingLimitMessageType. It also requires exactly one StatusApplicationControl element 
with attributes Start, End, InvTypeCode and (optional InvCode) for each AvailStatusMessage 
element. It must return an error if any of these are missing. There is however one exception: to 
completely reset all room availability information for a given Hotel a client might send a CompleteSet 
request with just one empty AvailStatusMessage element without any attributes. The presence of the 
empty AvailStatusMessage element is required for OTA validation.

Please note that previous versions of AlpineBits allowed some booking restrictions to be used in 
FreeRooms (length of stay and day of arrival). This possibility has been removed with version 2014-04 
as these restrictions are better handled by RatePlans.

AlpineBits recommends that Implementers that use delta requests should send the full set of 
information periodically.

A server that supports delta requests must indicate so via the 
OTA_HotelAvailNotif_accept_deltas capability. As always, it is the client's responsibility to 
check whether the server supports deltas before trying to send them.

4.1.2. Server response

The server will send a response indicating the outcome of the request. The response is a 
OTA_HotelAvailNotifRS document. Four types of outcomes are possible: success, advisory, warning or 
error.

Success

The request was accepted and processed successfully. The client does not need to take any further 
action.

In this case, the OTA_HotelAvailNotifRS response contains nothing but a single, empty Success 
element:

<?xml version="1.0" encoding="UTF-8"?>

<OTA_HotelAvailNotifRS
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns="http://www.opentravel.org/OTA/2003/05"
        xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_HotelAvailNotifRS.xsd"
        Version="1.001">

<Success/>

</OTA_HotelAvailNotifRS>

samples/FreeRooms-OTA_HotelAvailNotifRS-success.xml

Advisory

The request was accepted and processed successfully. However, one or more non-fatal problems were 
detected and added to the server response. The client does not need to resend the request, but must 
notify the user or the client implementer regarding the advisory received.

AlpineBits 2015-07b page 17 of 71



In this case, the OTA_HotelAvailNotifRS response contains an empty Success element followed by one 
or more Warning elements with the attribute Type set to the fixed value 11, meaning “Advisory” 
according to the OTA list “Error Warning Type” (EWT).

Each Warning element should contain a human readable text as in the following example:

<?xml version="1.0" encoding="UTF-8"?>

<OTA_HotelAvailNotifRS
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns="http://www.opentravel.org/OTA/2003/05"
        xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_HotelAvailNotifRS.xsd"
        Version="1.001">

        <Success/>
        <Warnings>
         <Warning Type="11">
                last full data set received more than 48 hours ago
            </Warning>
        </Warnings>

</OTA_HotelAvailNotifRS>

samples/FreeRooms-OTA_HotelAvailNotifRS-advisory.xml

Warning

The request could not be accepted or processed successfully.

The client must take action: it may try to resend the message if it has reason to assume the warning is 
transient and occurred for the first time, otherwise it must escalate the problem to the user or client 
implementer.

In this case, the OTA_HotelAvailNotifRS response contains an empty Success element followed by one 
or more Warning elements with the attribute Type set to any value allowed by the OTA list “Error 
Warning Type” (EWT) other than 11 (“Advisory”).

Each Warning element should contain a human readable text as in the following example:

<?xml version="1.0" encoding="UTF-8"?>

<OTA_HotelAvailNotifRS
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns="http://www.opentravel.org/OTA/2003/05"
        xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_HotelAvailNotifRS.xsd"
        Version="1.001">

        <Success/>
        <Warnings>
         <Warning Type="3">
                dates are too far in the future for this server to process
            </Warning>
        </Warnings>

</OTA_HotelAvailNotifRS>

samples/FreeRooms-OTA_HotelAvailNotifRS-warning.xml

AlpineBits 2015-07b page 18 of 71



Error

The request could not be accepted or processed successfully.

The client must take action: it may try to resend the message if it has reason to assume the error is 
transient and occurred for the first time, otherwise it must escalate the problem to the user or client 
implementer.

In this case, the OTA_HotelAvailNotifRS response contains one or more Error elements with the 
attribute Type set to the fixed value 13, meaning “Application error” according to the OTA list “Error 
Warning Type” (EWT) and the attribute Code set to any value present in the OTA list “Error Codes” 
(ERR). 

<?xml version="1.0" encoding="UTF-8"?>

<OTA_HotelAvailNotifRS
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns="http://www.opentravel.org/OTA/2003/05"
        xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_HotelAvailNotifRS.xsd"
        Version="1.001">

    <Errors>
        <Error Type="13" Code="404">
            Invalid start/end date combination
        </Error>
    </Errors>

</OTA_HotelAvailNotifRS>

samples/FreeRooms-OTA_HotelAvailNotifRS-error.xml

To aid implementers pick somewhat consistent error codes, here is a non-exhaustive list of codes that 
might be typically encountered when processing FreeRooms requests, taken from the OTA list “Error 
Codes” (ERR):

Code Text

361 Invalid hotel

392 Invalid hotel code

396 Invalid name

375 Hotel not active

135 End date is invalid

136 Start date is invalid

404 Invalid start/end date combination

131 Room/unit type invalid

69 Minimum stay criteria not fulfilled

70 Maximum stay criteria not fulfilled

362 Invalid number of nights

 

AlpineBits 2015-07b page 19 of 71



4.1.3. Implementation tips and best practice

● Note that in the 2011-11 version of AlpineBits the support of this action was mandatory for the 
server. This is no longer the case.

● Note that sending partial information (deltas) was added with AlpineBits 2013-04.

● For non-delta requests, since no time frame is explicitly transmitted by the client, a server is 
encouraged to delete and insert all the information stored in its backend, rather than updating it.

● Please note that the End date of an interval identifies the last day and night of the stay. Departure 
is the morning of the date after the End date.

● The OTA lists “Error Warning Type” (EWT) and “Error Codes” (ERR) come with the OTA2015A 
documentation package. The package can be downloaded from the OTA web site 3. The file 
OpenTravel_CodeList_2015_06_03.xlsm contains all the lists.

AlpineBits 2015-07b page 20 of 71



4.2. GuestRequests: quote requests, booking reservations and cancellations

The typical use case for GuestRequests is a portal that collects quote requests, booking reservations 
or booking cancellations from potential customers and stores them until a client (typically the software 
used by a hotel) retrieves them.

In this case, the client sends a first request to obtain the information from the server about any requests, 
reservation or cancellations with the parameter action set to the value OTA_Read:GuestRequests.

The server then responds with the requested information. 

Successively the client sends a follow-up request to acknowledge having received the information, with 
the parameter action set to the value OTA_NotifReport:GuestRequests.

4.2.1. First client request

The parameter action is set to the value OTA_Read:GuestRequests. and the parameter request 
must contain a OTA_ReadRQ document.

For the mandatory attributes HotelCode and HotelName the rules are the same as for room 
availability notifications (section 4.1.1).

The element SelectionCriteria with the Start attribute is optional.

When given, the server will send only inquiries generated after the Start timestamp, regardless 
whether the client has retrieved them before or not.

When omitted, the server will send all inquiries it has on record and that the client has not yet retrieved.

<?xml version="1.0" encoding="UTF-8"?>

<OTA_ReadRQ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
            xmlns="http://www.opentravel.org/OTA/2003/05"
            xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_ReadRQ.xsd"
            Version="1.001">

    <ReadRequests>
    <HotelReadRequest HotelCode="123" HotelName="Frangart Inn">
           <SelectionCriteria Start="2012-03-21T15:00:00+01:00"></SelectionCriteria>
       </HotelReadRequest>
    </ReadRequests>

</OTA_ReadRQ>

samples/GuestRequests-OTA_ReadRQ.xml

AlpineBits 2015-07b page 21 of 71



4.2.2 Server response

The server response is a OTA_ResRetrieveRS document indicating the outcome of the request. Two 
types of outcome are possible: error or success.

Error

If the request could not be accepted or processed successfully the OTA_ResRetrieveRS response 
contains one or more Error elements, each with Type and Code attributes containing human readable 
text. The rules for creating error messages are identical to the FreemRooms error case (please see 
section 4.1.2).

<?xml version="1.0" encoding="UTF-8"?>

<OTA_ResRetrieveRS
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns="http://www.opentravel.org/OTA/2003/05"
    xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_ResRetrieveRS.xsd"
    Version="7.000">

    <Errors>
        <Error Type="13" Code="392">
            Invalid hotel code
        </Error>
    </Errors>

</OTA_ResRetrieveRS>

samples/GuestRequests-OTA_ResRetrieveRS-error.xml

Success

In case of success, the OTA_ResRetrieveRS response will contain a single, empty Success element 
followed by a ReservationsList element with zero or more HotelReservation elements 
containing the requested information (zero elements indicate the server has no information for the client 
at this point).

Each HotelReservation must have the attributes CreateDateTime (the timestamp the information 
was collected by the portal). Furthermore the ResStatus attribute must be set. AlpineBits expects it to 
be one of the following four:

● Requested - this is a request for a quote
● Reserved - this is a booking reservation
● Modify - this is a booking modification
● Cancelled - this is a booking cancellation

The following example is a reservation (thus, ResStatus is Reserved). The documentation kit also 
has an example of a quote request. A cancellation is discussed later.

AlpineBits 2015-07b page 22 of 71



First, consider the outer part of the OTA_ResRetrieveRS document:

<?xml version="1.0" encoding="UTF-8"?>

<OTA_ResRetrieveRS
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns="http://www.opentravel.org/OTA/2003/05"
        xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_ResRetrieveRS.xsd"
        Version="7.000">

    <Success/>

    <ReservationsList>

        <HotelReservation CreateDateTime="2012-03-21T15:00:00+01:00"
                          ResStatus="Reserved">

              <!-- Type 14 -> Reservation -->
        <UniqueID Type="14" ID="6b34fe24ac2ff810"/>

             <RoomStays>      <!-- stays, see below -->                    </RoomStays>

             <ResGuests>      <!-- customer data, see below -->            </ResGuests>

             <ResGlobalInfo>  <!-- additional booking data, see below -->  </ResGlobalInfo>

    </HotelReservation>

    </ReservationsList>

</OTA_ResRetrieveRS>

samples/GuestRequests-OTA_ResRetrieveRS-reservation.xml - outer part

Each HotelReservation contains a mandatory UniqueID element that the client can use to 
recognize information it has already processed.

The UniqueID element must have the Type attribute set according the OTA Unique Id Type list (UIT). 
The value must be consistent with the ResStatus attribute of the surrounding HotelReservation 
element:

● For ResStatus = Requested, the Type must be 14 (Reservation)
● For ResStatus = Reserved, the Type must be 14 (Reservation)
● For ResStatus = Modify, the Type must be 14 (Reservation)
● For ResStatus = Cancelled, the Type must be 15 (Cancellation)

The attribute ID is a free text field suitable for uniquely identifying the  HotelReservation.

The actual data is then split into three parts: each HotelReservation contains the elements: 
RoomStays, ResGuests and ResGlobalInfo (all mandatory) discussed in the following paragraphs.

AlpineBits 2015-07b page 23 of 71



First part: RoomStays.

The RoomStays element contains one or more RoomStay elements, each indicating a desired stay.

<RoomStays>

    <RoomStay>

        <RoomTypes>
            <RoomType RoomTypeCode="bigsuite" RoomClassificationCode="42"/>

 </RoomTypes>

        <RatePlans>
            <RatePlan RatePlanCode="123456-xyz">
                <!-- Code 1 -> All inclusive -->
                <MealsIncluded MealPlanIndicator="true" MealPlanCodes="1"/>
            </RatePlan>
        </RatePlans>

        <!-- 2 adults + 1 child + 1 child = 4 guests -->
        <GuestCounts>
            <!-- 2 adults -->
            <GuestCount Count="2"/>
            <!-- 1 child -->
            <GuestCount Count="1" Age="9"/>
            <!-- 1 child -->
            <GuestCount Count="1" Age="3"/>
        </GuestCounts>

        <TimeSpan Start="2012-01-01" End="2012-01-12"/>

        <Guarantee>
            <GuaranteesAccepted>
                <GuaranteeAccepted>
                    <PaymentCard CardCode="VI"
                                 ExpireDate="1216">
                        <CardHolderName>Otto Mustermann</CardHolderName>
                        <CardNumber>
                            <PlainText>4444333322221111</PlainText>
                        </CardNumber>
                    </PaymentCard>
                </GuaranteeAccepted>
            </GuaranteesAccepted>
        </Guarantee>

        <Total AmountAfterTax="299" CurrencyCode="EUR"/>

    </RoomStay>

</RoomStays>

samples/GuestRequests-OTA_ResRetrieveRS-reservation.xml - RoomStay element

Each RoomStay element contains:

● one RoomType element (mandatory): see below for explanation.
● one RatePlan element with a RatePlanCode attribute (mandatory for reservations, optional 

for quote requests) and one MealsIncluded element (mandatory for reservations, optional 
for quote requests): the MealsIncluded element must contain the MealPlanCodes attribute 
(values see below) and must have the MealPlanIndicator attribute set to true.

● one GuestCounts element (mandatory) indicating the number of all adults (identified by one  
GuestCount element with no Age attribute given) and the number of all children (identified by 
zero or more GuestCount element with Age attribute given); of course all guests must be 
listed

● one TimeSpan element (mandatory): see below for explanation

AlpineBits 2015-07b page 24 of 71



● one PaymentCard element (only for reservations, optional); the element must have attributes 
CardCode (the card issuer, two uppercase letters, such as “VI” for Visa) and ExpireDate (four 
digits) and must have the sub-elements CardHolderName and CardNumber/PlainText (the 
cardnumber consisting of digits, either the complete number or the last 4 digits are given)

● one Total element (mandatory for reservations, optional for quote requests) containing the 
cost after taxes the portal has displayed to the customer, both attributes AmountAfterTax and 
CurrencyCode are required.

For reservations, the RoomType element is mandatory. Reservations must refer to a specific room 
category (specified by RoomTypeCode). Quote requests should refer a specific room category 
whenever possible (specified by the optional attribute RoomTypeCode) but may refer to a generic GRI 
(specified by the optional attribute RoomClassificationCode) or may be completely open if the 
RoomType element is present without attributes.

The RoomTypeCode must be identical to the InvTypeCode attribute used for room categories (see 
section 4.1.1). 

The RoomClassificationCode follows the OTA list “Guest Room Info” (GRI). It is used to loosely 
classify the kind of guest room (42 means just “Room”, 13 means “Apartments”, etc.) wished by the 
guest.

Regarding the MealPlanCodes attribute, AlpineBits does not use the single Breakfast/Lunch/Dinner 
booleans, but relies on the MealPlanCodes attribute only. The following codes (a subset of the full OTA 
list) are allowed:

● 1 - all inclusive
● 3 - bed and breakfast
● 10 - full board
● 12 - half board
● 14 - room only        

The TimeSpan element deserves a more detailed explanation.

For reservations (ResStatus is Reserved or Modify), the arrival and departure date must be given 
with the Start and End attributes of the TimeSpan element. No other attributes and no subelements 
must be present in TimeSpan.

For quote requests (ResStatus is Requested) the timespan can be given in the same way (i.e. using 
the Start and End attributes) or it may be given as a window. In this case  the TimeSpan element must 
have the Duration attribute (encoded in ISO 8601) and the StartDateWindow sub element with 
attributes EarliestDate and LatestDate which must be greater than EarliestDate indicating a 
range of possible start dates.

Duration are given in nights, the form is thus always PxN where x is a number.

If multiple RoomStay elements are given, all the TimeSpan elements must have exactly the same 
values.

As a special case, however, only for quote requests (ResStatus is Requested), it is possible to add 
at most one optional RoomStay element that contains only the TimeSpan element. In this case, this 
last TimeSpan is allowed to have different values (as a matter of fact, they must be different) and it 
ought to be interpreted by the client as an alternative period with regard to the preceding RoomStay 
element(s).

AlpineBits 2015-07b page 25 of 71



Second part: ResGuests.

Nested inside the ResGuests element is exactly one Customer element, providing the data of the 
primary guest.

The Gender attribute can be Male, Female or Unknown. The BirthDate attribute follows ISO 8601. 
The Language follows ISO 639-1 (two-letter lowercase language abbreviation). It identifies the language 
to be used when contacting the customer.

These three attributes are all optional. However, it is recommended that at least gender and language 
be specified (so the customer can be addressed properly). 

<ResGuests>
    <ResGuest>
        <Profiles>
            <ProfileInfo>
                <Profile>

                    <Customer Gender="Male" BirthDate="1980-01-01" Language="de">

                        <PersonName>
                            <NamePrefix>Herr</NamePrefix>
                            <GivenName>Otto</GivenName>
                            <Surname>Mustermann</Surname>
                            <NameTitle>Dr</NameTitle>
                        </PersonName>

                        <!-- Code 1 -> Voice -->
                        <Telephone PhoneTechType="1" PhoneNumber="+4934567891"/>
                        <!-- Code 3 -> Fax -->
                        <Telephone PhoneTechType="3" PhoneNumber="+4934567892"/>
                        <!-- Code 5 -> Mobile -->
                        <Telephone PhoneTechType="5" PhoneNumber="+4934567893"/>

                        <Email Remark="newsletter:yes">otto.mustermann@example.com</Email>

                        <Address Remark="catalog:yes">

                            <AddressLine>Musterstraße 1</AddressLine>
                            <CityName>Musterstadt</CityName>
                            <PostalCode>1234</PostalCode>
                            <CountryName Code="DE"/>

                        </Address>

                    </Customer>

                </Profile>
            </ProfileInfo>
        </Profiles>
    </ResGuest>
</ResGuests>

samples/GuestRequests-OTA_ResRetrieveRS-reservation.xml - Customer element

The Customer element contains:

● one PersonName element with NamePrefix, GivenName (mandatory), Surname (mandatory) 
and NameTitle

● zero or more Telephone elements with the optional PhoneTechType attribute: it indicates the 
phone technology (1 → voice, 3 → fax, 5 → mobile per OTA)

● one optional Email element
● one optional  Address element with the (all optional) elements  AddressLine, CityName, 

PostalCode and CountryName with Code attribute; the Code attribute follows ISO 3166-1 
alpha-2 (two-letter uppercase country codes)

AlpineBits 2015-07b page 26 of 71



Note that most elements and attributes under the ResGuests element are optional in the AlpineBits 
schema. It is, however, expected that as much contact information as possible is given.

The Email element may contain the attribute Remark having either values newsletter:yes or 
newsletter:no indicating whether the customer does or does not wish to receive an email newsletter. 
A missing Remark indicates the information is not known - for new customers this should be treated the 
same way as if a newsletter:no was given (do not send a newsletter), while existing customer 
records should not be updated.

Analogously, the Address element may contain the attribute Remark having either values 
catalog:yes or catalog:no indicating whether the customer does or does not wish to receive print 
ads by mail. A missing Remark indicates the information is not known - for new customers this should be 
treated the same way as if a catalog:no was given (do not send a mail), while existing customer 
records should not be updated.

Third part: ResGlobalInfo.

<ResGlobalInfo>

    <Comments>

        <Comment Name="included services">
            <ListItem ListItem="1" Language="de">Parkplatz</ListItem>
            <ListItem ListItem="2" Language="de">Schwimmbad</ListItem>
            <ListItem ListItem="3" Language="de">Skipass</ListItem>
        </Comment>

        <Comment Name="customer comment">
            <Text>
                Sind Hunde erlaubt?

                Mfg.
                Otto Mustermann.
            </Text>
        </Comment>

    </Comments>

    <CancelPenalties>
        <CancelPenalty>
            <PenaltyDescription>
                <Text>
                Cancellation is handled by hotel.
                Penalty is 50%, if canceled within 3 days before show, 100% otherwise.
                </Text>
            </PenaltyDescription>
        </CancelPenalty>
    </CancelPenalties>

    <HotelReservationIDs>
        <!-- ResID_Type 13 -> Internet Broker -->
        <HotelReservationID ResID_Type="13"
                            ResID_Value="Slogan"
                            ResID_Source="www.example.com"
                            ResID_SourceContext="top banner" />
    </HotelReservationIDs>

    <Profiles>
        <ProfileInfo>
            <!-- ProfileType 4 -> Travel Agent --> 
            <Profile ProfileType="4">
                <CompanyInfo>
                    <CompanyName Code="123" CodeContext="ABC">
                        ACME Travel Agency
                    </CompanyName>
                    <AddressInfo>
                        <AddressLine>Musterstraße 1</AddressLine>

AlpineBits 2015-07b page 27 of 71



                        <CityName>Flaneid</CityName>
                        <PostalCode>12345</PostalCode>
                        <CountryName Code="IT"/>
                    </AddressInfo>
                    <!-- Code 1 -> Voice -->
                    <TelephoneInfo PhoneTechType="1" PhoneNumber="+391234567890"/>
                    <Email>info@example.com</Email>
                </CompanyInfo>
            </Profile>
        </ProfileInfo>
    </Profiles>

    <!-- this is needed for OTA-2015A compatibility -->
    <BasicPropertyInfo/>

</ResGlobalInfo>

samples/GuestRequests-OTA_ResRetrieveRS-reservation.xml - ResGlobalInfo element

The ResGlobalInfo element contains:

● one Comment element (optional) with attribute Name set to included services containing 
the included services given as free text fields using ListItem elements (see below). In most 
cases the AlpineBits client software will just display this to a human hotel employee with no 
further processing

● one Comment element (optional) with attribute Name set to customer comment containing a 
single Text element freely filled out by the customer and fed through unchecked by the portal

● only allowed for reservations, one PenaltyDescription element (optional) containing a 
single Text element with no attributes that clearly states the cancellation policy the portal and 
the hotel have previously agreed upon and the portal has communicated to the customer - the 
language or languages of this text is chosen by the portal

● one or more HotelReservationID elements (optional) that can be used to transmit 
miscellaneous IDs associated with the reservation the trading partners have agreed upon; 
ResID_Type must be specified with a value from the OTA “Unique Id Type” list (UIT); the other 
attributes, ResID_Value, ResID_Source and ResID_SourceContext are all optional; 
historically, AlpineBits has used these fields to handle internet campaign management: in this 
case the agreement is to use a ResID_Type value of “13”  (internet broker) and the three 
attributes ResID_Value, ResID_Source and ResID_SourceContext identify, respectively, 
the campaign name (Slogan in our example), the campaign source (www.example.com) and the 
campaign marketing medium (top banner) following the scheme used by Google Analytics

● one optional Profile element with attribute ProfileType set to “4” with information about the 
booking channel; nested under Profile, a CompanyName element with attributes Code and 
CodeContext must be present, while the AddressInfo, TelephoneInfo and Email 
elements are optional: these contain the same data as the equivalent fields in the customer part 
(note the element names: AddressInfo and TelephoneInfo vs Address and Telephone in 
the customer part - also different ordering - dictated by OTA)

● one empty BasicPropertyInfo element (not used by AlpineBits, required for OTA schema 
validity)

Each ListItem element must have Language and ListItem attributes. At most one  ListItem 
element is allowed for each combination of Language and ListItem. 

AlpineBits 2015-07b page 28 of 71



Modifications and Cancellations.

A booking modification (ResStatus is Modify) is identical to a booking reservation (ResStatus is 
Reserved). However, for a booking modifications the client will recognize the UniqueId attribute and 
act accordingly, updating the reservation instead of adding a new one.

Besides quote requests and booking reservations, also cancellations can be handled. For cancellations 
the ResStatus is Cancelled as shown in the following example:

<?xml version="1.0" encoding="UTF-8"?>

<OTA_ResRetrieveRS
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns="http://www.opentravel.org/OTA/2003/05"
        xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_ResRetrieveRS.xsd"
        Version="7.000">

    <Success/>

    <ReservationsList>

        <HotelReservation CreateDateTime="2012-03-21T15:00:00+01:00"
                          ResStatus="Cancelled">

              <!-- Type 15 -> Cancellation -->
        <UniqueID Type="15" ID="c24e8b15ca469388"/>

         <!-- the following are optional for cancellations: -->
         <!--
         <RoomStays>     ...  </RoomStays>
         <ResGuests>     ...  </ResGuests>
         <ResGlobalInfo> ...  </ResGlobalInfo>
         -->

    </HotelReservation>

    </ReservationsList>

</OTA_ResRetrieveRS>

samples/GuestRequests-OTA_ResRetrieveRS-cancellation.xml 

Each HotelReservation must of course have the attributes CreateDateTime and ResStatus set 
to Cancelled.

Of course, the element UniqueID is mandatory, again with mandatory attribute Type 15 and attribute 
ID referring to the reservation that is being cancelled! Other reservation elements may be also sent.

4.2.3. Follow-up client request (acknowledgement)

A client, upon receiving a non-empty response to its first request (OTA_Read:GuestRequests), should 
initiate another request, acknowledging or refusing the UniqueID values it got (referring to quotes, 
reservations or cancellations).

AlpineBits 2015-07b page 29 of 71



For this follow-up request the parameter action is set to the value 
OTA_NotifReport:GuestRequests and the parameter request must contain a 
OTA_NotifReportRQ document.

Here is an example where a client refuses one reservation request and acknowledges three other 
requests. For the refusal, a standard Warning element is used. The value of the attribute Type can be 
set to any value of the OTA list “Error Warning Type” (EWT). The value 3 stands for “Biz rule”. The 
attribute Code can be set to any value present in the OTA list “Error Codes” (ERR). The value 450 stands 
for “Unable to process”. For the acknowledgments, the client uses again the HotelReservation 
element, one for each ID it wishes to acknowledge.

<?xml version="1.0" encoding="UTF-8"?>

<OTA_NotifReportRQ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
        xmlns="http://www.opentravel.org/OTA/2003/05" 
        xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_NotifReportRQ" 
        Version="1.000">

    <Success/>

    <Warnings>
        <!-- refuse reservation with ID=f054bbd2f5ebab9 -->
        <Warning Type="3" Code="450" RecordID="f054bbd2f5ebab9">
            Unable to process reservation
        </Warning>
    </Warnings>

    <NotifDetails>
        <HotelNotifReport>
            <HotelReservations>

                <HotelReservation>
                    <!-- ACK reservation with ID="6b34fe24ac2ff810" -->
                    <UniqueID Type="14" ID="6b34fe24ac2ff810"/>
                </HotelReservation>

                <HotelReservation>
                    <!-- ACK cancellation with ID="c24e8b15ca469388" -->
                    <UniqueID Type="15" ID="c24e8b15ca469388"/>
                </HotelReservation>

                <HotelReservation>
                    <!-- ACK quote request with ID="1000000000000001" -->
                    <UniqueID Type="14" ID="1000000000000001"/>
                </HotelReservation>

            </HotelReservations>
        </HotelNotifReport>
    </NotifDetails>

</OTA_NotifReportRQ>

samples/GuestRequests-OTA_ReadRQ-ack.xml

The following rules apply to acknowledgements:

AlpineBits 2015-07b page 30 of 71



● For every UniqueID, the server must remember whether or not the client has acknowledged it 
yet.

● It is a client's responsibility to send the acknowledgments - if it doesn't, it must be prepared to 
deal with duplicates the next time it queries the server.

Here is a sample sequence of messages exchanged between a client and a server

time client request server response comment

08:00 action = OTA_Read:GuestRequests;
request = OTA_Read with SelectionCriteria Start 
today 00:00

OTA_ResRetrieveRS 
with UniqueID=1 
(Reservation) and 
UniqueID=2 (Request)

the server answers with 
today's two requests (1 and 
2)

08:01 action = OTA_NotifReport:GuestRequests;
request = OTA_NotifReportRQ with UniqueID=1

OTA_NotifReportRS 
Success

server knows the client got 
1, it will not be sent again

09:00 action = OTA_Read:GuestRequests;
request = OTA_Read

OTA_ResRetrieveRS 
with UniqueIDs 2 and 3 
(Request)

the client wishes to read all 
new requests, 1 is not sent 
(since it was ack'ed), 2 is 
sent again and 3 is sent 
because it's new

10:00 action = OTA_Read:GuestRequests;
request = OTA_Read

OTA_ResRetrieveRS 
with UniqueIDs 2 and 3 
(Request)

same server response as at 
09:00 because 2 and 3 were 
not ack'ed

10:01 action = OTA_NotifReport:GuestRequests;
request = OTA_NotifReportRQ with UniqueID=2, 
3

OTA_NotifReportRS 
Success

server now knows the client 
got all three

11:00 action = OTA_Read:GuestRequests;
request = OTA_Read with SelectionCriteria Start 
today 00:00

OTA_ResRetrieveRS 
with UniqueIDs 1, 2 and 
3 (Request)

the SelectionCriteria Start 
overrides the fact that all 
three guest requests had 
already been ack’ed, so the 
server sends all three again

4.2.4. Follow-up server response

The server will respond with a OTA_NotifReportRS document that contains either an Error element 
following the same rules as for the preceding server response or an empty Success element i.e. the 
server must return an error if it detects any mismatch in the acknowledge message. An example of 
mismatches is if IDs are ack'ed for the wrong Type.

4.2.5. Implementation tips and best practice

● If a non-standard MealsIncluded has to be transmitted, consider using the closest standard 
MealsIncluded combination. This needs prior agreement among the parts, which is not 
covered by AlpineBits. For example in South-Tyrol some hotels offer "Dreiviertel-Pension" (half 
board plus afternoon snack, hence a non-standard MealsIncluded combination) to their 
guests. This may be transmitted as half board, since "Dreiviertel-Pension" replaces half board for 
these hotels.

● The value of the PhoneNumber attribute (element Telephone) should contain the standard 
international format (as in +<country code><phone number>) whenever possible.

AlpineBits 2015-07b page 31 of 71



4.3. SimplePackages: package availability notifications

When the value of the action parameter is OTA_HotelRatePlanNotif:SimplePackages the client 
intends to send package availability notifications to the server.

Please note that SimplePackages do not aim at fully describing all possible aspects and properties of a 
complex package, and in particular they do not aim at describing all properties in a fully machine 
processable way. Information given as free text is typically intended to be visualized on a portal, not as 
an input to a fully automated booking workflow (hence the name "Simple").

The availability of multiple packages may be transmitted within a single request, which must be treated 
in a single transaction by the server. Hence an error response means that no data has been accepted 
by the server.

4.3.1. Client Request (notify package availability)
The parameter request must contains an OTA_HotelRatePlanNotifRQ document with one or more 
RatePlan elements each describing an available package. The mandatory Start and End attributes 
indicate the start and end dates (ISO 8601) of the package’s public visibility. Below is the outer part of 
the request document:

<?xml version="1.0" encoding="UTF-8"?>

<OTA_HotelRatePlanNotifRQ
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns="http://www.opentravel.org/OTA/2003/05"
    xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_HotelRatePlanNotifRQ.xsd"
    Version="2.001">

    <RatePlans>

        <RatePlan Start="2012-01-01" End="2012-12-31">

            <Rates>
                <!-- availability, costs, meals, see below -->
            </Rates>

            <Description Name="title">
                <!-- see below -->
            </Description>

            <Description Name="intro">
                <!-- see below -->
            </Description>

            <Description Name="gallery">
                <!-- see below -->
            </Description>

            <Description Name="details">
                <!-- see below -->
            </Description>

            <UniqueID Type="18" ID="3f6fce1f0da2ef57"/>

            <HotelRef HotelCode="123" HotelName="Frangart Inn"/>

       </RatePlan>

    </RatePlans>

</OTA_HotelRatePlanNotifRQ>

samples/SimplePackages-OTA_HotelRatePlanNotifRQ.xml - outer part

AlpineBits 2015-07b page 32 of 71



Looking towards the end of the document first:

● the mandatory UniqueID element uniquely identifies the package, it must be of Type 18 
(meaning other per OTA code table) and the ID must be present; if a client sends a notification 
using an UniqueID it has sent before it wishes to update (overwrite) all information stored on the 
server

● the mandatory HotelRef element associates a hotel to each package. The attributes 
HotelCode and HotelName are described in room availability notifications (section 4.1.1)

While it is possible to send more than one RatePlan element, AlpineBits requires that all RatePlan 
elements refer to the same Hotel. Hence at most one hotel can be dealt with in a single request. An 
AlpineBits server must return an error if it receives a request referring to more than one Hotel.

The mandatory Rates element contains one or more Rate elements with data about dates, costs and 
meals:

<Rates>

<Rate MinGuestApplicable="2" Start="2012-08-01" End="2012-08-31" Sat="true" Duration="P7N">

    <BaseByGuestAmts>
        <BaseByGuestAmt NumberOfGuests="1" AmountAfterTax="499.00" CurrencyCode="EUR"/>
    </BaseByGuestAmts>

    <RateDescription Name="included services">
        <!-- included services in free text form -->
        <ListItem ListItem="1" Language="en">parking lot (included)</ListItem>
        <ListItem ListItem="2" Language="en">swimming pool (included)</ListItem>
        <ListItem ListItem="3" Language="en">full board (+25 EUR)</ListItem>
        <ListItem ListItem="1" Language="it">parcheggio</ListItem>
        <ListItem ListItem="2" Language="it">piscina</ListItem>
        <ListItem ListItem="3" Language="it">pensione completa (+25 EUR)</ListItem>
        <ListItem ListItem="1" Language="de">Parkplatz</ListItem>
        <ListItem ListItem="2" Language="de">Schwimmbad</ListItem>
        <ListItem ListItem="3" Language="de">Vollpension (+25 EUR)</ListItem>
    </RateDescription>

    <MealsIncluded Breakfast="true" Lunch="false" Dinner="true"/>

</Rate>

<Rate MinGuestApplicable="2" Start="2012-12-01" End="2012-12-31" Sat="true" Duration="P7N">

    <BaseByGuestAmts>
        <BaseByGuestAmt NumberOfGuests="1" AmountAfterTax="599.00" CurrencyCode="EUR"/>
    </BaseByGuestAmts>

    <RateDescription Name="included services">
        <!-- included services in free text form -->
        <ListItem ListItem="1" Language="en">parking lot</ListItem>
        <ListItem ListItem="2" Language="en">skipass</ListItem>
        <ListItem ListItem="1" Language="it">parcheggio</ListItem>
        <ListItem ListItem="2" Language="it">skipass</ListItem>
        <ListItem ListItem="1" Language="de">Parkplatz</ListItem>
        <ListItem ListItem="2" Language="de">Skipass</ListItem>
    </RateDescription>

    <MealsIncluded Breakfast="true" Lunch="true" Dinner="true"/>

</Rate>

</Rates>

samples/SimplePackages-OTA_HotelRatePlanNotifRQ.xml -  Rate elements

AlpineBits 2015-07b page 33 of 71



In the example the first of the two Rate elements means that the package is 7 nights with arrival date 
any Saturday in August 2012 (attributes Start and End are mandatory, the optional Sat attribute 
indicates a DOW (day of week) limitation, indicating the rate is available only for arrival days on a 
Saturday. The Duration attribute is mandatory and is encoded in ISO 8601. AlpineBits allows only 
durations given in nights, the form is thus always PxN where x is a number.

Total cost is 499 EUR (expressed by mandatory attributes AmountAfterTax and CurrencyCode) per 
person (mandatory attribute NumberOfGuests) with a minimum of 2 persons (mandatory attribute 
MinGuestApplicable). AlpineBits requires NumberOfGuests to be always 1. That means package 
prices are always per person. Also, package prices are always to be considered starting prices: the 499 
EUR in this example should be displayed to the customer as "starting from 499 EUR".

The mandatory element MealsIncluded has attributes Breakfast, Lunch and Dinner set to true or 
false - all three must be be given, even if their value is false; the optional attribute MealPlanCodes 
can be used as described in section 4.2, and is not shown in the example.

The included services are given as free text fields in the optional RateDescription element using 
ListItem elements. Each ListItem element must have Language and ListItem attributes. At 
most one  ListItem element is allowed for each combination of Language and ListItem. These are 
intended for humans, not for automated processing.

The second Rate element specifies another period of validity of the same package: the example 
package can be booked also in December, it has full board then, includes a skipass instead of the 
swimming pool and costs 599 EUR.

Following are four Description elements.

<!-- the title of the package (plain text),
     repeated for each language -->

<Description Name="title">
    <Text TextFormat="PlainText" Language="en">Hiking in the Atacama Desert</Text>
    <Text TextFormat="PlainText" Language="it">Escursione nel deserto di Atacama</Text>
    <Text TextFormat="PlainText" Language="de">Bergwandern in der Atacamawüste</Text>
</Description>

<!-- the short introductory text (plain text) and optional URLs,
     repeated for each language  -->

<Description Name="intro">

    <Text TextFormat="PlainText" Language="en">
        Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
        incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
        exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
    </Text> 
    <URL>http://www.alpinebits.org/en/</URL>

    <Text TextFormat="PlainText" Language="it">
        Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
        incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
        exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
    </Text> 
    <URL>http://www.alpinebits.org/it/</URL>

    <Text TextFormat="PlainText" Language="de">
        Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
        incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
        exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
    </Text> 
    <URL>http://www.alpinebits.org/de/</URL>

AlpineBits 2015-07b page 34 of 71



</Description>

<!-- the images associated with the package: copyright/caption, image and optional URLs,
 repeated for each language -->

<Description Name="gallery">

    <Text TextFormat="PlainText" Language="en">
        (C) 2012 Example Inc.
    </Text>
    <Image>http://www.example.com/image-en.gif</Image>
    <URL>http://www.example.com/en</URL>

    <Text TextFormat="PlainText" Language="it">
        (C) 2012 Example Inc.
    </Text>
    <Image>http://www.example.com/image-it.gif</Image>
    <URL>http://www.example.com/it</URL>

    <Text TextFormat="PlainText" Language="de">
        (C) 2012 Example Inc.
    </Text>
    <Image>http://www.example.com/image-de.gif</Image>
    <URL>http://www.example.com/de</URL>

</Description>

<!-- the detail description as texts (plain text, HTML) or ListItems,
     repeated for each language -->

<Description Name="details">

    <Text TextFormat="PlainText" Language="en">
       Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
       incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
       exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
    </Text>
    <Text TextFormat="HTML" Language="en">
        <![CDATA[
        Duis aute <b>irure dolor</b> in reprehenderit involuptate velit esse cillum dolore
        eu <a href="http://www.alpinebits.org/">fugiat nulla pariatur</a>. Excepteur sint
        occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim
        id est laborum.
        ]]>
    </Text>
    <ListItem ListItem="1" Language="en">commodo consequat</ListItem>
    <ListItem ListItem="2" Language="en">voluptate velit</ListItem>

    <!-- other languages not shown... -->

</Description>

samples/SimplePackages-OTA_HotelRatePlanNotifRQ.xml -  Description elements

Title.

The first Description element has Name set to title and is mandatory. This is the title of the 
package.

It must contain nothing but Text elements (at least one). Each Text element must have TextFormat 
set to PlainText and the Language attribute must be given.

At most one Text element per language is allowed.

AlpineBits 2015-07b page 35 of 71



Intro.

The second Description element has Name set to intro and is mandatory as well. This is the short 
introductory text of the package with optional URLs.

It must contain one or more  Text elements. Each Text element must have TextFormat set to 
PlainText and the Language attribute must be given. Each Text element can be followed by zero or 
more URL elements.

The URL elements are implicitly associated with the text (and the language of the text) that precedes 
them.

At most one Text element per language is allowed.

Gallery.

The third Description element with Name set to gallery is optional. It contains one or more 
images associated with the package.

For each image there is a Text element with the TextFormat set to PlainText. It describes the 
caption/copyright for the image. The Language attribute is mandatory.

Following the Text element is the mandatory Image element containing the image location (HTTP 
URL). The Image element can be followed by zero or more URL elements.

The Image and URL elements are implicitly associated with the caption/copyright text and the language 
that precedes them. In the present example there are 3 images.

Of course, there can be more than one Image per language.

Details.

The fourth and last  Description element with Name set to details, is optional. It can contain zero 
or more Text elements and zero or more ListItem elements. It must contain at least one element 
however.

Each Text element must have TextFormat set to PlainText or HTML, and the Language attribute 
must be given. At most one Text element is allowed for each combination of Language and 
TextFormat. The presence of a Text element with TextFormat set to HTML is intended as a rich text 
alternative of a Text element with TextFormat set to PlainText of the same Language and makes 
the latter mandatory. 

Please note that an AlpineBits server is explicitly allowed to filter, shorten or even skip the HTML 
content, therefore the usage of Text elements with TextFormat set to HTML is not recommended but 
left as an option for implementers that absolutely need it.

The ListItem elements are intended to provide a structured description of the package that will be 
shown to the end user. The appearance of the structured description depends on the server 
implementation, it is not guaranteed to follow the textual description. Each ListItem element must 
have Language and ListItem attributes. At most one  ListItem element is allowed for each 
combination of Language and ListItem.

AlpineBits 2015-07b page 36 of 71



4.3.2. Client request (notify that a package is no longer available)

A client that wishes to notify the server that a package is no longer available will send one or more 
RatePlan elements that only contain a UniqueID element and are otherwise empty, such as shown in 
the following example:

<?xml version="1.0" encoding="UTF-8"?>

<OTA_HotelRatePlanNotifRQ
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns="http://www.opentravel.org/OTA/2003/05"
    xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_HotelRatePlanNotifRQ.xsd"
    Version="2.001">

    <RatePlans>

        <RatePlan>

            <UniqueID Type="18" ID="3f6fce1f0da2ef57"/>

       </RatePlan>

    </RatePlans>

</OTA_HotelRatePlanNotifRQ>

samples/SimplePackages-OTA_HotelRatePlanNotifRQ-remove.xml

A server must return an error response if a client tries to notify that a package not in the server records 
(ID) is no longer available.

All given RatePlan elements must refer to the same hotel: at most one hotel can be dealt with in a 
single request. An AlpineBits server must return an error if it receives a request referring to more than 
one Hotel.

Please note that it is not allowed to mix notifications that packages are available with notifications that 
packages are no longer available in the same request.

AlpineBits 2015-07b page 37 of 71



4.3.3. Server response

The server will send a response indicating the outcome of the request. The response is an 
OTA_HotelRatePlanNotifRS document. Four types of outcome are possible: success, advisory, warning 
or error.

Success

The request was accepted and processed successfully. The client does not need to take any further 
action.

In this case the OTA_HotelRatePlanNotifRS response contains nothing but a single, empty Success 
element:

<?xml version="1.0" encoding="UTF-8"?>

<OTA_HotelRatePlanNotifRS
    xmlns="http://www.opentravel.org/OTA/2003/05"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_HotelRatePlanNotifRS.xsd"
    Version="3.14">

    <Success/>

</OTA_HotelRatePlanNotifRS>

samples/SimplePackages-OTA_HotelRatePlanNotifRS-success.xml

Advisory

The request was accepted and processed successfully. However, one or more non-fatal problems were 
detected and added to the server response. The client does not need to resend the request, but must 
notify the user or the client implementer regarding the advisory received.

In this case, the OTA_HotelRatePlanNotifRS response contains an empty Success element followed by 
one or more Warning elements with the attribute Type set to the fixed value of 11, meaning “Advisory” 
according to the OTA list “Error Warning Type” (EWT).

If a Warning element is not regarding the request as a whole but specific to a RatePlan element in the 
request, the Warning must also have a RecordID attribute.

The value of RecordID must be the value of the RatePlan/UniqueID/ID the  Warning is referred to.

Each Warning element should contain human readable text as in the following example:

<OTA_HotelRatePlanNotifRS
    xmlns="http://www.opentravel.org/OTA/2003/05"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_HotelRatePlanNotifRS.xsd"
    Version="3.14">

    <Success/>
    <Warnings>
        <Warning Type="11" RecordID="3f6fce1f0da2ef57">
            end date is less than 3 days from now
        </Warning>

AlpineBits 2015-07b page 38 of 71



    </Warnings>

</OTA_HotelRatePlanNotifRS>

samples/SimplePackages-OTA_HotelRatePlanNotifRS-advisory.xml

Warning

The request could not be accepted or processed successfully.

The client must take action: it may try to resend the message if it has reason to assume the warning is 
transient and occurred for the first time, otherwise it must escalate the problem to the user or client 
implementer.

In this case, the OTA_HotelRatePlanNotifRS response contains an empty Success element followed by 
one or more Warning elements with the attribute Type set to any value allowed by the OTA list “Error 
Warning Type” (EWT) other than 11 (“Advisory”).

If a Warning element is not regarding the request as a whole but specific to a RatePlan element in the 
request, the Warning must also have a RecordID attribute.

The value of RecordID must be the value of the RatePlan/UniqueID/ID the  Warning is referred to.

Each Warning element should contain a human readable text as in the following example:

<OTA_HotelRatePlanNotifRS
    xmlns="http://www.opentravel.org/OTA/2003/05"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_HotelRatePlanNotifRS.xsd"
    Version="3.14">

    <Success/>
    <Warnings>
        <Warning Type="3" RecordID="3f6fce1f0da2ef57">
            dates are too far in the future for this server to process
        </Warning>
    </Warnings>

</OTA_HotelRatePlanNotifRS>

samples/SimplePackages-OTA_HotelRatePlanNotifRS-warning.xml

AlpineBits 2015-07b page 39 of 71



Error

The request could not be accepted or processed successfully.

The client must take action: it may try to resend the message if it has reason to assume the error is 
transient and occurred for the first time, otherwise it must escalate the problem to the user or client 
implementer.

In this case, the OTA_HotelAvailNotifRS response contains one or more Error elements with the 
attribute Type set to the fixed value of 13, meaning “Application error” according to the OTA list “Error 
Warning Type” (EWT) and the attribute Code set to any value present in the OTA list “Error Codes” 
(ERR). 

<OTA_HotelRatePlanNotifRS
    xmlns="http://www.opentravel.org/OTA/2003/05"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_HotelRatePlanNotifRS.xsd"
    Version="3.14">

    <Errors>
        <Error Type="13" Code="404">
            Invalid start/end date combination
        </Error>
    </Errors>

</OTA_HotelRatePlanNotifRS>

samples/SimplePackages-OTA_HotelRatePlanNotifRS-error.xml

4.3.4. Implementation tips and best practice

● If a non-standard MealsIncluded has to be transmitted, consider using the closest standard 
MealsIncluded combination. This needs prior agreement among the parts, which is not 
covered by AlpineBits. For example in South-Tyrol some hotels offer "Dreiviertel-Pension" (half 
board plus afternoon snack, hence a non-standard MealsIncluded combination) to their 
guests. This may be transmitted as half board, since "Dreiviertel-Pension" replaces half board for 
these hotels.

● The OTA lists “Error Warning Type” (EWT) and “Error Codes” (ERR) come with the OTA2015A 
documentation package. The package can be downloaded from the OTA web site 3. The file 
OpenTravel_CodeList_2015_06_03.xlsm contains all the lists.

AlpineBits 2015-07b page 40 of 71



4.4. Inventory: room category information

When the value of the action parameter is OTA_HotelDescriptiveContentNotif:Inventory 
the client informs the server about the available room categories and optionally rooms.

Please note that for this purpose the message used in this version is different than the one used 
previously! Almost every information sent previously can nevertheless be mapped to the new message, 
the mapping is outlined in appendix B.2.

4.4.1. Client request

The parameter request contains an OTA_HotelDescriptiveContentNotifRQ document.

Each document contains one HotelDescriptiveContent element. For the mandatory attributes 
HotelCode and HotelName the rules are the same as for room availability notifications (section 4.1.1). 
Note that information about only one hotel per message can be transmitted.

Nested inside the HotelDescriptiveContent an enclosing FacilityInfo element contains a list of 
GuestRoom elements. These may be of three distinct kinds:

● to define room categories and provide basic description of them (the category is identified by the 
attribute Code) 

● to provide additional descriptive content related to room categories (identified by the attribute 
Code)

● to list specific rooms for each category (identified by the attribute Code)
Here is the global structure of such a document, here the first GuestRoom element (collapsed) is the 
category definition, the following elements are the specific rooms. The differences are explained in detail 
below:

<?xml version="1.0" encoding="UTF-8"?>

<OTA_HotelDescriptiveContentNotifRQ 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xmlns="http://www.opentravel.org/OTA/2003/05" 
  xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05
                      OTA_HotelDescriptiveContentNotifRQ.xsd" 
  Version="8.000">

 <HotelDescriptiveContents>

    <HotelDescriptiveContent HotelCode="123" HotelName="Frangart Inn">

      <FacilityInfo>

       <GuestRooms>

          <!-- This element defines a category and contains its basic description -->

          <GuestRoom Code="DZ" MaxOccupancy="2" MinOccupancy="1" MaxChildOccupancy="1">
            <!-- -->
          </GuestRoom>

         <GuestRoom Code="DZ">

            <TypeRoom RoomID="101"/>

          </GuestRoom>

AlpineBits 2015-07b page 41 of 71



          <GuestRoom Code="DZ">

            <TypeRoom RoomID="102"/>

          </GuestRoom>

       </GuestRooms>

      </FacilityInfo>

    </HotelDescriptiveContent>

  </HotelDescriptiveContents>

</OTA_HotelDescriptiveContentNotifRQ>

samples/Inventory-OTA_HotelDescriptiveContentNotifRQ.xml - outer part

The GuestRoom element, when used to define a room category and its basic description (as in the first 
element of the example above), contains the following attributes:

● Code: mandatory, identifies the category
● MinOccupancy: mandatory, sets the minimum number of guests allowed for this room category
● MaxOccupancy: mandatory, sets the maximum number of guests allowed for this room 

category
● MaxChildOccupancy: optional, must be 0 <= MaxChildOccupancy <= MaxOccupancy. This 

attribute can be used to influence the computation of the total cost of the stay in the presence of 
children (see section 4.5 under “Computing the cost of a stay” for details). Note that this attribute 
cannot be used to disallow children in a stay. This attribute may only be used if the capability 
OTA_HotelDescriptiveContentNotif_Inventory_occupancy_children is announced 
by the server. 

In the same context of defining room categories and their basic description, inside GuestRoom the 
following elements are defined:

● TypeRoom: mandatory element with the mandatory attribute StandardOccupancy, indicating 
the type of Room and the mandatory attribute RoomClassificationCode, used to classify the 
kind of guest room following the OTA list “Guest Room Info” (GRI) (42 means just “Room”, 13 
means “Apartments”, etc...). No further attributes are allowed for this element in this context.

● Amenities: optional element containing a list of Amenity, each indentified by the mandatory 
attribute RoomAmenityCode following the OTA list "Room Amenity Type" (RMA)

● MultimediaDescription:  exactly one MultimediaDescription element with attribute InfoCode 
= 25 (Long name) must be present, at most one MultimediaDescription element with attribute 
InfoCode = 1 (Description) may be optionally present and at most one 
MultimediaDescription element with attribute InfoCode = 23 (Pictures) may be optionally 
present. This element is explained in more depth in the following section.

AlpineBits 2015-07b page 42 of 71



Here is an example of the GuestRoom element used to define a room category and its basic descriptive 
data:

<GuestRoom Code="DZ" MaxOccupancy="2" MinOccupancy="1" MaxChildOccupancy="1">

  <!-- RoomClassificationCode = "42" means Room, 13 Apartment, see OTA table GRI -->
  <TypeRoom StandardOccupancy="2" RoomClassificationCode="42"/>

  <Amenities>
    <!-- 26 means Crib, see OTA table RMA -->
    <Amenity RoomAmenityCode="26"/>
  </Amenities>

  <MultimediaDescriptions>

    <MultimediaDescription InfoCode="25">
      <!-- ... -->
    </MultimediaDescription>

    <MultimediaDescription InfoCode="1">
      <!-- ... -->
    </MultimediaDescription>

    <MultimediaDescription InfoCode="23">
      <!-- ... -->
    </MultimediaDescription>

  </MultimediaDescriptions>

</GuestRoom>

samples/Inventory-OTA_HotelDescriptiveContentNotifRQ.xml - a GuestRoom used to define and describe a 
room category

The GuestRoom element can also provide additional descriptive content related to room categories in 
a separate message, in this case its only mandatory attribute is Code to identify the room category and 
the only mandatory elements are MultimediaDescription, all without attribute InfoCode.  If additional 
descriptive content is sent in the same message as the basic information, then the related 
MultimediaDescription elements may just be appended to the MultimediaDescriptions container.

A server announces if it accepts basic or additional descriptions using the corresponding capabilities 
OTA_HotelDescriptiveContentNotif_Inventory_accept_basic and 
OTA_HotelDescriptiveContentNotif_Inventory_accept_additional. A client receiving both 
capabilities from the server must send all the information it has on record within the same message. In 
this case the MultimediaDescription elements without attribute InfoCode must be transmitted beside 
the basic descriptions.

The GuestRoom element is also used to list all the rooms belonging to a category (as seen in the first 
example), in this case the only allowed and mandatory attribute is Code that identifies the category for 
the specific room. No further attributes are allowed. Similar restrictions also apply to the sub element 
inside GuestRoom: the mandatory element TypeRoom with the only and mandatory attribute 
RoomID that identifies the specific room is allowed, further elements or attributes are not allowed, 
included but not limited to the MultimediaDescription element.

A server must accept a list of rooms, that should be sent by the client - if available -  regardless of the 
capability OTA_HotelDescriptiveContentNotif_Inventory_use_rooms. If the capability is set 
by the server then the full list of rooms must be sent. A server that has no use for the Room list data is 

AlpineBits 2015-07b page 43 of 71



free to discard these upon receiving them, but must do so silently (i.e. without returning Errors or 
Warnings).

Basic and additional descriptive content

Two levels of descriptive content were already introduced: basic and additional. Both levels are 
transmitted using MultimediaDescription elements. Descriptions of the basic level must have the 
InfoCode attribute set, whereas the descriptions of the additional level must not have the InfoCode 
attribute. The general rules for this element are the following:

● the optional InfoCode attribute, set only for basic descriptions, must have one of the following 
values: 1 for (textual) Description, 25 for (textual) Long Name (used as title in AlpineBits),  23 for 
Pictures. This is a subset of OTA list "Information type" (INF).

● a MultimediaDescription element with attribute InfoCode = 25 or 1 must contain only a single 
TextItem element 

● a MultimediaDescription element with attribute InfoCode = 23 must contain only a single 
ImageItem element

● a MultimediaDescription element for additional descriptive content, hence without attribute 
InfoCode must contain (if present) only a single ImageItems element which must contain a list 
of one or more ImageItem elements, no further elements are allowed.

An example of the element  MultimediaDescription used to transmit the basic descriptive content 
follows:

<MultimediaDescriptions>

  <MultimediaDescription InfoCode="25">

    <TextItems>

      <TextItem>

        <Description TextFormat="PlainText" Language="en">Double room</Description>

        <Description TextFormat="PlainText" Language="de">Doppelzimmer</Description>

        <Description TextFormat="PlainText" Language="it">Camera doppia</Description>

      </TextItem>

    </TextItems>

  </MultimediaDescription>

  <MultimediaDescription InfoCode="1">

    <TextItems>

      <TextItem>
                              
        <Description TextFormat="PlainText" Language="en">Description of the double 
room.</Description>
                              
        <Description TextFormat="PlainText" Language="de">Doppelzimmer 
Beschreibung.</Description>

        <Description TextFormat="PlainText" Language="it">Descrizione della camera 
doppia.</Description>

      </TextItem>

AlpineBits 2015-07b page 44 of 71



    </TextItems>

  </MultimediaDescription>

  <MultimediaDescription InfoCode="23">

    <ImageItems>

      <!-- 6 means Guest room, see OTA table PIC -->
      <ImageItem Category="6">

        <ImageFormat CopyrightNotice="Copyright notice 2015">

          <URL>http://www.example.com/image.jpg</URL>

        </ImageFormat>

        <Description TextFormat="PlainText" Language="en">Picture of the room</Description>

        <Description TextFormat="PlainText" Language="de">Zimmerbild</Description>

        <Description TextFormat="PlainText" Language="it">Immagine della 
stanza</Description>

      </ImageItem>

    </ImageItems>

  </MultimediaDescription>

<MultimediaDescriptions>

samples/Inventory-OTA_HotelDescriptiveContentNotifRQ.xml - a List of MultimediaDescription

TextItems contains a list of TextItem elements, which must contain one or more Description elements 
with the mandatory attributes TextFormat (must be PlainText) and the mandatory attribute 
Language. The Language attribute must follow ISO 639-1 (two- letter lowercase language 
abbreviation). There can be at most one Description for any given value of the Language attribute.

ImageItems contains a list of one or more ImageItem elements with mandatory Category attribute 
following the OTA list "Picture Category Code" (PIC). Typical values are 6 (Guest Room) and 17 (Map) 
but the whole table is allowed.  The ImageItem element contains a single, mandatory ImageFormat 
element with the optional attribute CopyrightNotice. Inside, a single mandatory element URL, holds 
the URL where the picture can be retrieved as its value. Zero or more Description elements follow, 
under the same rules outlined above for descriptions contained in the element TextItem. Images should 
be processed by the server in the order they are submitted (i.e. the order used to show the pictures the 
to end users should be consistent with the one sent by the client).

The distinction between basic and additional descriptions has been introduced because a single client 
could have information that are fundamental on the technical side (everything outlined in the first 
scenario above, e.g. minimum and maximum occupancy) but may lack inspiring pictures of the rooms. 
AlpineBits therefore introduces a possibility for the server to accept additional descriptive content from 
one or multiple clients, while still having a single reputable source for the basic information (technically 
speaking a server may accept basic data from multiple clients, but it is highly discouraged to do so to 
prevent inconsistencies).  

Note that AlpineBits does not support deltas for Inventory. After successfully processing an Inventory 
request of type basic, a server should consider deleted all previous basic inventory data sent via 

AlpineBits 2015-07b page 45 of 71



AlpineBits. Further, all additional Inventory data, FreeRooms and RatePlans that refer to any now 
missing inventory data should be considered outdated. Any additional Inventory data referring to 
inventory data that is still valid must not be updated. 

An Inventory request of type additional replaces all previous additional Inventory data, the server must 
not update the basic inventory data. If multiple clients are providing additional Inventory data it is up to 
the server implementation to guarantee the integrity of the data.

A server, when receiving a message that contains only additional descriptive content must check if the 
room categories are already known and must give proper feedback (i.e. return a warning) if they aren't 
(this indicates that the basic info either on the server or on the client are outdated). Please note that 
missing room categories must not be considered an error, as it is well possible that some room 
categories do not have additional descriptive data.

Please note that categories in inventories should refer to physical inventories. They must not be used 
as logical inventories. For example it is not allowed to introduce an inventory with code suite-x  and 
one with code suite-x-special-offer for the purpose of modeling two different products from the 
same inventory (RatePlans will take care of that).

4.4.2. Server response

The server will send a response indicating the outcome of the request. The response is an 
OTA_HotelDescriptiveContentNotifRS document. Four types of outcome are possible: success, advisory, 
warning or error.

Success

The request was accepted and processed successfully. The client does not need to take any further 
action.

In this case the OTA_HotelDescriptiveContentNotifRS response contains nothing but a single, empty 
Success element:

<?xml version="1.0" encoding="UTF-8"?>

<OTA_HotelDescriptiveContentNotifRS xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xmlns="http://www.opentravel.org/OTA/2003/05" 
    xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_HotelInvNotifRS" 
    Version="3.000">

    <Success/>

</OTA_HotelDescriptiveContentNotifRS>

samples/Inventory-OTA_HotelDescriptiveContentNotifRS-success.xml

Advisory

The request was accepted and processed successfully. However, one or more non-fatal problems were 
detected and added to the server response. The client does not need to resend the request, but must 
notify the user or the client implementer regarding the advisory received.

In this case, the OTA_HotelDescriptiveContentNotifRS response contains an empty Success element 
followed by one or more Warning elements with the attribute Type set to the fixed value of 11, 
meaning “Advisory” according to the OTA list “Error Warning Type” (EWT).

AlpineBits 2015-07b page 46 of 71



Each Warning element should contain a human readable text as in the following example:

<?xml version="1.0" encoding="UTF-8"?>

<OTA_HotelDescriptiveContentNotifRS xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xmlns="http://www.opentravel.org/OTA/2003/05" 
    xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 
OTA_HotelDescriptiveContentNotifRS" 
    Version="3.000">

    <Success/>
    <Warnings>
        <Warning Type="11">
            description text contains lorem ipsum
        </Warning>
    </Warnings>

</OTA_HotelDescriptiveContentNotifRS>

samples/Inventory-OTA_HotelDescriptiveContentNotifRS-advisory.xml

Warning

The request could not be accepted or processed successfully.

The client must take action: it may try to resend the message if it has reason to assume the warning is 
transient and occurred for the first time, otherwise it must escalate the problem to the user or client 
implementer.

In this case, the OTA_HotelDescriptiveContentNotifRS response contains an empty Success element 
followed by one or more Warning elements with the attribute Type set to any value allowed by the OTA 
list “Error Warning Type” (EWT) other than 11 (“Advisory”).

Each Warning element should contain a human readable text as in the following example:

<?xml version="1.0" encoding="UTF-8"?>

<OTA_HotelDescriptiveContentNotifRS xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xmlns="http://www.opentravel.org/OTA/2003/05" 
    xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 
OTA_HotelDescriptiveContentNotifRS" 
    Version="3.000">

    <Success/>
    <Warnings>
        <Warning Type="3">
            too many products
        </Warning>
    </Warnings>

</OTA_HotelDescriptiveContentNotifRS>

samples/Inventory-OTA_HotelDescriptiveContentNotifRS-warning.xml

AlpineBits 2015-07b page 47 of 71



Error

The request could not be accepted or processed successfully.

The client must take action: it may try to resend the message if it has reason to assume the error is 
transient and occurred for the first time, otherwise it must escalate the problem to the user or client 
implementer.

In this case, the OTA_HotelDescriptiveContentNotifRS response contains one or more Error elements 
with the attribute Type set to the fixed value of 13, meaning “Application error” according to the OTA list 
“Error Warning Type” (EWT) and the attribute Code set to any value present in the OTA list “Error Codes” 
(ERR). 

<?xml version="1.0" encoding="UTF-8"?>

<OTA_HotelDescriptiveContentNotifRS xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xmlns="http://www.opentravel.org/OTA/2003/05" 
    xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 
OTA_HotelDescriptiveContentNotifRS" 
    Version="3.000">

    <Errors>
        <Error Type="13" Code="404">
            inconsistent values for occupancy
        </Error>
    </Errors>

</OTA_HotelDescriptiveContentNotifRS>

samples/Inventory-OTA_HotelDescriptiveContentNotifRS-error.xml

4.4.3. Implementation tips and best practice

Please note that for this purpose the message used in this version is different than the one used 
previously! Almost every information sent previously can nevertheless be mapped to the new message, 
the mapping is outlined in appendix B.1.

AlpineBits 2015-07b page 48 of 71



4.5. RatePlans

If the action parameter is OTA_HotelRatePlanNotif:RatePlans the client sends information 
about rates and related rules.

4.5.1. Client request

The parameter request contains an OTA_HotelRatePlanNotifRQ document.

Each document contains one RatePlans element. For the mandatory attributes HotelCode and 
HotelName the rules are the same as for room availability notifications (section 4.1). Note that requests 
are limited to one hotel per message.

Nested inside RatePlans are RatePlan elements, one for each rate plan. The RatePlan element has the 
following mandatory attributes (but see the next section for exceptions):

➔ RatePlanNotifType is either New, Overlay or Remove (see section “Synchronization” below),
➔ CurrencyCode is EUR,
➔ RatePlanCode is the rate plan ID.

The optional RatePlan attributes RatePlanType and RatePlanCategory are used to transmit special 
offers and are defined as follows: A special offer or package presented by the hotel must set 
RatePlanType to 12 (means “Promotional”) and must not set the RatePlanCategory attribute. An offer 
or package campaigned by a third party (such as a consortium or a tourist organization) in which the 
hotel participates must set RatePlanType to 12 and also the RatePlanCategory attribute with a value 
defined by the third party.

Two more optional attributes are RatePlanID and RatePlanQualifier. They can only be sent if the 
server supports the OTA_HotelRatePlanNotif_accept_RatePlanJoin capability. These two 
attributes are used to identify a “master” rateplan and its alternative versions (e.g. different 
MealPlanCodes for the same offer by the lodging structure). All these alternative versions share the 
same RatePlanID: exactly one RatePlan for each RatePlanID value must have the RatePlanQualifier 
set to true, every other RatePlan that shares the same RatePlanID must have the RatePlanQualifier 
set to false. The RatePlan with RatePlanQualifier set to true must be used by the server for every 
information outside BookingRule and Rate elements (e.g. Offers, Supplements, descriptive contents are 
taken from this RatePlan).

Each RatePlan element contains, in order:

● zero or more BookingRule elements: used to restrict the applicability of the rate plan to a given 
stay - zero means no restrictions,

● zero or more Rate elements: indicate the cost of stay,
● zero or more Supplement elements: to specify supplements such as final cleaning fees or similar 

extras,
● zero, one or two Offer elements: indicates offers such as free nights or kids go free,
● zero, one or two Description elements.

AlpineBits 2015-07b page 49 of 71



Here is the global structure of the document:

<?xml version="1.0" encoding="UTF-8"?>
<OTA_HotelRatePlanNotifRQ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns="http://www.opentravel.org/OTA/2003/05"
        xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_HotelRatePlanNotifRQ"
        Version="1.000">

    <RatePlans HotelCode="123" HotelName="Frangart Inn">

        <RatePlan RatePlanNotifType="Overlay" CurrencyCode="EUR" RatePlanCode="Rate1-4-HB">

            <BookingRules>
                <BookingRule Start="2014-04-15" End="2014-11-02">
                    ...
                </BookingRule>
            </BookingRules>

            <Rates>
                <Rate InvTypeCode="double" Start="2014-04-15" End="2014-05-20">
                    ...
                </Rate>
            </Rates>

            <Supplements>
                <Supplement> ... </Supplement>
            </Supplements>

            <Offers>
                <Offer> ... </Offer>
            </Offers>

            <Description Name="title">
                <!-- ... -->
            </Description>

        </RatePlan>

    </RatePlans>

</OTA_HotelRatePlanNotifRQ>

samples/RatePlans-OTA_HotelRatePlanNotifRQ.xml - outer part

The optional  Description element, if present, must have the attribute Name set to either title or 
intro. When two Description elements are used, they must not have the same value for the attribute 
Name. Each Description element contains one or more Text elements with the attribute TextFormat set 
to  PlainText or HTML and the attribute Language set to a two-letter lowercase language abbreviation 
according to ISO 639-1. At most one Text element is allowed for each combination of Language and 
TextFormat.

The presence of a Text element with TextFormat set to HTML is intended as rich text alternative of a 
Text element with TextFormat set to PlainText of the same Language and makes the latter 
mandatory. 

Please note that an AlpineBits server is explicitly allowed to filter, shorten or even skip the HTML 
content, therefore the usage of Text elements with TextFormat set to HTML is not recommended but 
left as an option for implementers that absolutely need it.

The elements BookingRule, Rate, Supplement and Offer  are explained in the following sections.
AlpineBits 2015-07b page 50 of 71



Booking rules

BookingRule elements can be linked to room categories (see section 4.4) via their Code attribute. If the 
Code attribute is given, also the CodeContext attribute must be set and its value must be ROOMTYPE 
(OTA lacks a InvTypeCode attribute in this context). A BookingRule without a Code attribute applies to 
all room categories.

A BookingRule element must have attributes Start and End (both must be valid dates in the form 
YYYY-MM-DD) and satisfy the condition Start ≤ End. Unless otherwise specified, Start and End must 
be considered inclusive.

Within the same rate plan, BookingRule elements must not overlap (concerning their Start and End  
attributes) if they belong to the same class. Classes are:

● BookingRule elements with no Code attribute,
● BookingRule elements with the same value for the Code attribute.

The server must consider overlaps as an error.

BookingRule elements are used to define a number of restriction criteria:

● the minimum or maximum length of stay (LOS) using the LengthOfStay element,
● the arrival day of week (arrival DOW) using the ArrivalDaysOfWeek element,
● the departure day of week (departure DOW) using the DepartureDaysOfWeek element,
● a master restriction status (values Open/Close) using the RestrictionStatus element.

Any missing criteria is to be interpreted as unrestricted.

When matching a BookingRule, a server must consider the following rules:

● criteria of the booking rule (if any) that applies to the arrival day (Start ≤ arrival day ≤ End): min 
LOS, max LOS, arrival DOW, master status Open,

● criteria of the booking rule (if any) that applies to the departure day (Start ≤ departure day ≤ 
End): departure DOW,

● each day of the stay (excluding the departure day) must not be denied by a master status 
Close rule.

A stay must be allowed by all applicable booking rules. In particular, there might be a BookingRule 
element with a Code attribute and a BookingRule element without a Code attribute, both applicable to 
a given stay. In such a case, both rules must allow the stay.

Three booking rule examples are shown here.

<BookingRule Start="2016-03-03" End="2016-04-17">
    <LengthsOfStay>
        <LengthOfStay Time="5" TimeUnit="Day" MinMaxMessageType="SetMinLOS"/>
        <LengthOfStay Time="7" TimeUnit="Day" MinMaxMessageType="SetMaxLOS"/>
    </LengthsOfStay>
</BookingRule>

Booking rule (example A)

In example A, length of stay (LOS) restrictions are given. At most one LengthOfStay element with a 
MinMaxMessageType value of SetMinLOS and one with a MinMaxMessageType value of SetMaxLOS 
can be given. The Time attribute must be an integer > 0 and the TimeUnit must be Day. This rule would 
restrict any stay having 2016-03-03 ≤ arrival day ≤ 2016-04-17 to a duration between 5 and 7 nights.

AlpineBits 2015-07b page 51 of 71



<BookingRule Start="2016-01-01" End="2017-12-31" Code="double" CodeContext="ROOMTYPE">
    <DOW_Restrictions>
        <ArrivalDaysOfWeek   Mon="0" Tue="0" Weds="0" Thur="1" Fri="0" Sat="1" Sun="0"/>
        <DepartureDaysOfWeek Mon="0" Tue="0" Weds="0" Thur="1" Fri="0" Sat="1" Sun="0"/>
    </DOW_Restrictions>
</BookingRule>

Booking rule (example B)

In example B, arrival day of week (arrival DOW) and departure day of week (departure DOW) restrictions 
are given. At most one ArrivalDayOfWeek element and at most one DepartureDayOfWeek element 
must be given. The DOW attributes that are 0 or false indicate restricted DOWs. A missing DOW 
attribute or a value of 1 or true indicate there is no restriction. This example would restrict any stay 
requesting a “double” room (note the Code attribute) to arrive and depart on a Thursday or Saturday.

Alternatively, example B could also be written as:

<BookingRule Start="2016-01-01" End="2017-12-31" Code="double" CodeContext="ROOMTYPE">
    <DOW_Restrictions>
        <ArrivalDaysOfWeek   Mon="0" Tue="0" Weds="0"          Fri="0"         Sun="0"/>
        <DepartureDaysOfWeek Mon="0" Tue="0" Weds="0"          Fri="0"         Sun="0"/>
    </DOW_Restrictions>
</BookingRule>

Booking rule (example B - alternative)

The following example (C) forbids any stay in the suite in August (departure on the 1st of August is 
possible). 

<BookingRule Start="2016-08-01" End="2016-08-31" Code="suite" CodeContext="ROOMTYPE">
    <RestrictionStatus Restriction="Master" Status="Close"/>
</BookingRule>

Booking rule (example C)

Both attributes, Restriction and Status are mandatory. The value Close is necessary for the restriction 
to occur. An Open value would be equivalent to no restriction.

Rates

Rate elements must have an InvTypeCode attribute that links them to room categories (see section 
4.4).

A Rate element must have attributes Start and End (both must be valid dates in the form YYYY-MM-
DD) and satisfy the condition Start ≤ End.

A stay matches the Start and End attributes if the the arrival day is ≥ Start and the departure day ≤ End 
+ 1. When the server computes the total cost of the stay it must find a matching rate for each night of 
the stay. Otherwise it cannot compute the total cost, and the stay is not possible.

Within the same rate plan, two Rate elements must not overlap (concerning their Start and End  
attributes) if they have the same InvTypeCode attribute.

AlpineBits 2015-07b page 52 of 71



The server must consider overlaps as an error.

By default, all rates are per night. It is, however, possible to specify rates per an arbitrary amount of 
nights. This is done by adding the attributes RateTimeUnit (Day is the only allowed value) and 
UnitMultiplier (number of nights) to the Rate element. All rates in the same rate plan must have the 
same value for UnitMultiplier.

Rate elements specify costs (all amounts are taken to be in EUR and after taxes). Rate sub-elements 
are: BaseByGuestAmt, AdditionalGuestAmount and MealsIncluded.

Here is an example of a rate:

<Rate InvTypeCode="double" Start="2014-03-03" End="2014-03-08">
<BaseByGuestAmts>
  <BaseByGuestAmt Type="7" NumberOfGuests="1" AgeQualifyingCode="10" AmountAfterTax="106"/>
  <BaseByGuestAmt Type="7" NumberOfGuests="2" AgeQualifyingCode="10" AmountAfterTax="192"/>
</BaseByGuestAmts>
<AdditionalGuestAmounts>
  <AdditionalGuestAmount AgeQualifyingCode="8"              MaxAge="3"  Amount="0"   />
  <AdditionalGuestAmount AgeQualifyingCode="8"  MinAge="3"  MaxAge="6"  Amount="38.4"/>
  <AdditionalGuestAmount AgeQualifyingCode="8"  MinAge="6"  MaxAge="10" Amount="48"  />
  <AdditionalGuestAmount AgeQualifyingCode="8"  MinAge="10" MaxAge="16" Amount="67.2"/>
  <AdditionalGuestAmount AgeQualifyingCode="10"                         Amount="76.8"/>
</AdditionalGuestAmounts>
<MealsIncluded MealPlanIndicator="true" MealPlanCodes="12"/>
</Rate>

samples/RatePlans-OTA_HotelRatePlanNotifRQ.xml - rate

The BaseByGuestAmt elements (at least one must be present) have the following attributes:

● Type(mandatory) with values 7 (“per person”) or 25 (“per room”),
● NumberOfGuests (mandatory) is an integer value > 0,
● AmountAfterTax (mandatory) is a decimal value > 0.0 (0.0 is not allowed),
● AgeQualifyingCode (mandatory) is set to 10 (“adult”).

For a given RatePlan, the value of all Type attributes must be the same for all BaseByGuestAmt 
elements in every Rate in the rate plan.

For a given Rate, all BaseByGuestAmt elements must have distinct NumberOfGuests values.

One or more  BaseByGuestAmt elements are needed to cover all possible guest occupancies 
compatible with the room category occupancy limits. In particular, one BaseByGuestAmt element with 
attributes NumberOfGuests equal to the standard occupancy must be present. Additional 
BaseByGuestAmt elements with values between the minimum and the standard occupancy may be 
present. See the section “Computing the cost of a stay” below for details.

The AdditionalGuestAmount elements (zero or more can be present) are used to transmit the prices 
for guests that are in a room beyond its standard occupancy. Specific prices for children may also be 
sent with these elements. They have the following attributes:

● AgeQualifyingCode (mandatory) is set to 8 (“child) or 10 (“adult”),
● MinAge and MaxAge are both integer values > 0 (a value of 0 is forbidden by OTA, even for 

MinAge); when both are given together, the inequation MaxAge > MinAge must hold,
● Amount (mandatory) is a decimal value ≥ 0.0 (0.0 is allowed)

AdditionalGuestAmount elements must also comply with these rules that help resolve ambiguities 
when computed the total cost of a stay:

AlpineBits 2015-07b page 53 of 71



● If AdditionalGuestAmount are defined at all,  exactly one AdditionalGuestAmount element 
with a AgeQualifyingCode set to 10 (“adult”) must be present.

● AdditionalGuestAmount elements having AgeQualifyingCode set to 8 (“child”) must have at 
least one of the attributes MinAge or MaxAge. Contrary, those with AgeQualifyingCode set to 
10 (“adult”) must have neither.

● The attributes MinAge and MaxAge are used to identify age brackets. An age matches the 
bracket if and only if the following two conditions hold:

● MinAge is not given or MinAge ≤ age,
● MaxAge is not given or MaxAge > age.

For each rate the set of age brackets must be defined in such a way that every possible age 
matches zero or one age brackets.

If the set of age brackets “has holes”, i.e. given ages a < b < c, a and c are matched by some 
brackets, but b is not, a server may respond with an advisory warning. Please note that the 
message is valid but it is strongly discouraged as this may change in an upcoming release of 
AlpineBits.

AlpineBits requires all rates in a rate plan to refer to the same board type. Ideally one would define the 
board type at the level of the rate plan, but OTA doesn't support that. So all rates must contain a 
MealsIncluded element with the same value for the MealPlanCodes attribute.

AlpineBits does not use the single Breakfast/Lunch/Dinner booleans, but relies on the MealPlanCodes 
attribute only. The following codes (a subset of the full OTA list) are allowed:

● 1 - all inclusive,
● 3 - bed and breakfast,
● 10 - full board,
● 12 - half board,
● 14 - room only.       

The MealsIncluded element must have the MealPlanIndicator attribute set to true.

Supplements

Supplements are supported through Supplement elements.

Each Supplement element has the following mandatory attributes:

● InvType is set to EXTRA,
● InvCode can be set freely (1 - 16 characters according to OTA) and is used as a key to identify 

a supplement.
The InvType value ALPINEBITSEXTRA is not currently used, but is reserved for a future shared list of 
common InvCode values.

The following attributes and sub-elements describe the supplement, in the rest of the document they'll be 
referred to as static data:

● The attribute AddToBasicRateIndicator must be set to true (to indicate the supplement 
amount must be added to the amount coming from the rate).

1. The attribute MandatoryIndicator (a boolean value) indicates that the customer must book the 
supplement (true) or can choose to book the supplement (false); a missing 
MandatoryIndicator attribute has the same meaning as one set to false.

AlpineBits 2015-07b page 54 of 71



2. The attribute ChargeTypeCode must have one of the following values:
a.  1 - daily,
b. 12 - per stay,
c. 18 - per room per stay,
d. 19 - per room per night,
e. 20 - per person per stay,
f. 21 - per person per night,
g. 24 - item.

Note that when ChargeTypeCode is 24, the total cost of stay should be computed by asking the 
user for the number of items.

1. Up to two Description elements (following the same schema as the rate plan Description 
elements).

All the attributes mentioned are mandatory for supplements that contain static data, the Description 
element with Name set as title is mandatory as well, the Description element with Name set as 
intro is optional. Further, supplements that contain static data must not contain the attributes Start 
and End.

The following attributes and sub-elements define the price of the supplement for specific periods of time, 
in the rest of the document they will be referred to as date depending data:

● the attribute Amount indicates the cost of the supplement; amounts are taken to be in EUR and 
after taxes; a value of 0 indicates the supplement is free of charge. If the attribute is missing, the 
Supplement is not available,

● the attributes Start and End (with the usual meaning) define the period where the Amount 
surcharge is applied. 

The attributes Start and End are mandatory for supplements that contain date depending data, the 
attribute Amount is optional. No further Element or Attribute is allowed.

Multiple date dependent Supplement elements referring to the same InvCode might be used to specify 
different prices for different date ranges. Overlaps are not allowed: it is a client responsibility to check 
that different Amount are never set for the same date and the same Supplement; a server must return 
an error if it detects such an inconsistency in the data.

When defining supplements, static and date depending data must be transmitted in separate 
Supplement elements.

Here is a complete example of a supplement:

<Supplements>

<Supplement InvType="EXTRA"
            InvCode="0x539"
            AddToBasicRateIndicator="true"
            MandatoryIndicator="true"
            ChargeTypeCode="18">
    <Description Name="title">
        <Text TextFormat="PlainText" Language="de">Endreinigung</Text>
        <Text TextFormat="PlainText"  Language="it">Pulizia finale</Text>
    </Description>
    <Description Name="intro">
        <Text TextFormat="PlainText" Language="de">
            Die Endreinigung lorem ipsum dolor sit amet.
        </Text>
        <Text  TextFormat="PlainText" Language="it">
            La pulizia finale lorem ipsum dolor sit amet.

AlpineBits 2015-07b page 55 of 71



       </Text>
    </Description>
</Supplement>

<Supplement InvType="EXTRA"
            InvCode="0x539"
            Amount="20"
            Start="2014-10-01"
            End="2014-10-11">
</Supplement>

</Supplements>

samples/RatePlans-OTA_HotelRatePlanNotifRQ.xml - supplement

Static data may only be transmitted in messages with RatePlanNotifType set to New. Moreover, all the 
static data must be defined within a single Supplement element.

Date depending data may be also transmitted in messages with RatePlanNotifType set to Overlay. 
See the section "Synchronization" below.

Supplements contribute to the total cost of a stay. The general rule is that this contribution must always 
be added to the amount calculated from the applied rates on a day by day basis. The departure day 
supplements must not be applied, as the guest is leaving.

In case of  ChargeTypeCode with value 12, 18 and 20 (see above, all supplements that are per stay) 
the cost of a supplement may vary in the period of the stay. In this case, the total cost of the supplement 
must be calculated using the following algorithm (assuming a 3-night stay with a cost of  € 80 for the first 
two days and € 85 for last two (including the departure day)):

● calculate the number of days where the supplement applies (the supplement must not be applied 
to the departure day, hence the result is 3),

● sum the applicable price for each day (80 + 80 + 85 = 245 €),
● divide the result for the number of days obtained at step 1 and round the result at the second 

decimal place (245 / 3 = 81,67 €).

Offers

Offers are supported through the Offer element. AlpineBits only supports offers having a Discount 
element with the Percent attribute set to 100. There are two use cases:

● free nights offers, such as "7+1" formulas and the like,
● family offers, such as "first kid goes free".

Rate plans may only have at most two Offer elements - at most one of each kind. Rate plans are 
applicable to a stay only if all offers that are defined in the rate plan are applicable.

A free nights offer has a Discount element with the following attributes, all mandatory:

● Percent - value is always 100.
● NightsRequired - how many nights at least must be booked for the discount to apply.
● NightsDiscounted - how many nights are discounted (if the stay is n times the required nights, 

the discounted nights also are n times as many).
● DiscountPattern - the pattern is required to be in the form (nights required - nights discounted) 

times the 0 followed by (nights discounted) times the 1. No other pattern is allowed.
Note that there is some redundancy in the last three attributes. This is done on purpose for clarity.

AlpineBits 2015-07b page 56 of 71



Free night offers apply to every amount referring to the discounted night (rates as well as per-day or per-
night supplements, including mandatory ones).

Free night offers may be only used in conjunction with rates that have a UnitMultiplier of 1.

Here is an example of a free nights offer:

<Offer>
<Discount Percent="100" NightsRequired="7" NightsDiscounted="1" DiscountPattern="0000001"/>
</Offer>

samples/RatePlans-OTA_HotelRatePlanNotifRQ.xml -  free nights offer

A family offer has a Discount element with just the Percent attribute set to 100 followed by at most one 
Guest element defining who goes free. Guest attributes (all mandatory) are:

● AgeQualifyingCode is set to 8.
● MaxAge is an integer value > 0: the discount only applies to guests having age < MaxAge.
● MinCount is an integer value ≥ 0: it identifies the minimum number of guests having age < 

MaxAge that are required for the offer to be applicable. 
● FirstQualifyingPosition - always set to 1,
● LastQualifyingPosition - number of persons the discount applies to,

If the attribute MinCount is set to 0, the offer (and therefore the rate plan) is applicable also if no guest 
matches the MaxAge criteria, however no guest will receive the discount. 

Family offers apply to every amount referring to the discounted guest (rates as well as per-person 
supplements, including mandatory ones).

In case the number of age-matching guests exceeds the number of discounted guests, AlpineBits 
requires to discount the guests starting from the youngest.

Here is an example of a family offer. If at least one child of age < 5 years is present, she will enjoy a free 
stay. If no child of age < 5 years is present, the offer (and therefore the rate plan) will not be applicable.

<Offer>
    <Discount Percent="100"/>
    <Guests>
        <Guest AgeQualifyingCode="8" MaxAge="5" MinCount="1"
               FirstQualifyingPosition="1" LastQualifyingPosition="1" />
    </Guests>
</Offer> 

samples/RatePlans-OTA_HotelRatePlanNotifRQ.xml - family offer

Here is another example: up to two children, each of age < 6 years will stay free. If no child of age < 6 
years is present, the offer (and therefore the rate plan) is still applicable, but nobody will get the discount.

<Offer>
    <Discount Percent="100"/>
    <Guests>
        <Guest AgeQualifyingCode="8" MaxAge="6" MinCount="0"
               FirstQualifyingPosition="1" LastQualifyingPosition="2" />
    </Guests>
</Offer> 

 family offer 

AlpineBits 2015-07b page 57 of 71



4.5.2. Computing the cost of a stay

The information contained in a rate plan message (together with information about the stay and the 
inventory) can be used to compute the total cost of a given stay, provided the stay is possible at all.

The computation is somewhat complex due to the large number of rules involved. The rationale is that 
the algorithm should be as unambiguous and as top-down as possible. It is never necessary to perform 
permutations or recursion to find a “optimized solution”. Elements with Start and End attributes, for 
example, must not overlap. The same is true for age brackets, as we’ve seen. The application of children 
rebates is very carefully designed to give a unique result and the same holds for offers, etc.

The required steps to perform such a computation are outlined in this section. Also see the section 
“Implementation tips and best practice” below for a link to a reference implementation.

The following information is needed about the stay:

● the number of adult guests: n ≥ 0,
● the ages (in years) of all non-adult guests (that are potentially eligible for children rebates): an 

array of integers c,
● the requested room category (i.e. InvTypeCode / Code): code,
● the arrival date arr and the departure date dep where dep > arr.

The total number of guests (n + the length of the array c) must be > 0.

Note that currently there is no possibility to specify a cut-off age for children rebates in AlpineBits. This is 
planned for a future release, though.

The following information is needed about the requested room category from inventory (see section 4.4):

● the value of MinOccupancy min > 0,
● the value of StandardOccupancy std ≥ min,
● the value of MaxOccupancy max ≥ std,
● (optional) the value of MaxChildOccupancy mco, such that  0 ≤ mco ≤ max.

From these values the minimum number of guests that ought to pay the full rate (minfull)  can be 
computed:

● if MaxChildOccupancy is not given, minfull = std,
● otherwise, minfull = maximum(min, minimum(max - mco, std)).

Then, to verify that a stay is allowed and to compute its total cost, the following steps need to be 
performed.

Step 1 (occupancy check)

Verify that min ≤ total number of guests (n + the length of the array c) ≤ max. Unless this 
inequation holds, the stay in the selected room category is not possible and no cost can be 
computed.

Step 2 (transformation)

While n < minfull and the length of c is > 0, keep removing the greatest element from the array c 
and incrementing n by 1. In simple words: transform kids to adults as long as there are any left in 
an attempt to reach the minimum number of guests that pay the full rate.

AlpineBits 2015-07b page 58 of 71



Step 3 (family offers)

If there are any matching family offers, apply them. When a family offer is applied, the 
corresponding elements from the array c are  removed. The number of removed elements is 
referred to as numfree below.

Pay attention to the fact that all offers must be applicable for a stay to be possible. Hence a rate 
plan with a family offer that cannot be applied (because guests with the required ages are not 
present and MinCount is not set to 0) cannot be used to satisfy the stay. 

Step 4a (restrictions check)

Verify that no BookingRule elements impose restrictions that forbid the stay. The restrictions to 
consider have been detailed earlier in this section (see the section “booking rules”): the 
minimum/maximum length of stay (LOS), the arrival/departure day of week (DOW), the master 
restriction status.

Step 4b (compute cost)

Loop over the dates of the period of stay, finding the rate with matching Start and End values. 
Thanks to the fact that rates must not overlap, there is no ambiguity there. 

It might be necessary, and it is explicitly allowed

● to “stitch” rates together to cover longer stays, accumulating the amount due and/or 
● to “split” rates having a UnitMultiplier > 1, dividing the amount due by the fraction of nights used.

As said earlier, a stay is only possible if every night of the stay can be covered by a rate.

The detailed implementation for this particular loop-over-and-match-rate step will likely depend 
on the data model used. However it is important that for each rate, the following sub-steps are 
performed exactly as described here in order to pick the correct amount from the 
BaseByGuestAmt and AdditionalGuestAmount elements.

So, for each date and matching rate, consider these contributions to the total cost:

● If there are elements in c that have no matching AdditionalGuestAmount elements with 
AgeQualifyingCode set to 8 (“child”), i.e. no age brackets match, only for the evaluation of 
this specific rate, those elements are removed from c to yield a c’. The value of n is then 
incremented accordingly to yield a n’. This is the local transformation step.

● Out of the n’ guests, up to and including std, each pay an amount given by the one 
BaseByGuestAmt element having:

○ a NumberOfGuests value of minimum(n’ + length of c’ + numfree , std) if the Type 
value is 7 (“per person”) or

○ a NumberOfGuests value of minimum(n’, std) if the Type is 25 (“per room”).
If the correct BaseByGuestAmt element is not available, the stay as a whole is not 
possible (the rate plan is incomplete and cannot be applied).

● The remaining guests among the n’ - if any - each pay an amount given by the 
AdditionalGuestAmount elements with AgeQualifyingCode set to 10 (“adult”).

If the correct AdditionalGuestAmount element is not available, the stay as a whole is 
not possible (the rate plan is incomplete and cannot be applied).

● Finally, each guest from the array c’ pays an amount given by the AdditionalGuestAmount 
elements with AgeQualifyingCode set to 8 (“child”) and the matching age bracket (that we know 
is present after the local transformation step).

AlpineBits 2015-07b page 59 of 71



At this point, unless a free nights offer applies to the date and rate just considered (note that free 
nights offers are compatible only with rates having a UnitMultiplier of 1), sum the contribution to 
the total cost.

Next, consider the supplements (mandatory and optional ones). Again, the exact implementation 
of the supplement matching algorithm will depend very much on the data model used. Note in 
any case, that free nights offers also apply to supplements, so the contribution to the cost from 
supplements that are per day is affected too.

Here is a flow chart of the process:

AlpineBits 2015-07b page 60 of 71



4.5.3. Synchronization

Clients and servers often wish to exchange only delta information about rates in order to keep the total 
amount of data to be processed in check. 

AlpineBits uses the RatePlanNotifType attribute in each RatePlan element to define exactly how deltas 
have to be interpreted. In order to transmit new rate plans or to replace them RatePlanNotifType = New 
must be used. To transmit changes (deltas) a RatePlanNotifType value of Overlay must be used.

Note, however, that 

● RatePlanNotifType = New
At least one Description element must be present in the rate plan.The server adds the rate plan 
as a whole. If a rate plan with the same RatePlanCode already exists, it is replaced. In case of 
supplements all static data must be sent within this message. Offers must be set within this 
message. The attributes RatePlanID and RatePlanQualifier - if supported by the server - might 
only be sent within this message. 

● RatePlanNotifType = Overlay
The server updates the rate plan (identified by RatePlanCode) using the received data. 
Elements that are not transmitted are not touched, elements that are transmitted are completely 
replaced (including all subelements). Since empty elements replace existing elements, sending 
empty elements can be a means to delete them (see clarification below). In case of supplements 
only date depending data may be sent within this message, thus supplements cannot be deleted 
with an Overlay message, but they may be set as not available. Offers cannot be changed with 
an Overlay message. In order to update offers, the whole RatePlan has to be sent again (using 
New). If the server has no rate plan with the given RatePlanCode, it may ignore the client request 
but must return a warning if it does.

● RatePlanNotifType = Remove
The rate plan must be empty (no child elements). The server deletes the rate plan (identified by 
RatePlanCode). If the server has no rate plan with the given RatePlanCode, it may ignore the 
client request but must return a warning in this case.

So, when updating a rate plan, sending empty elements will delete them. Note, however, this only works 
for the elements with “key” attributes Start, End and Code/InvTypeCode: i.e. BookingRule and Rate. 
One cannot delete sub-elements (such as only the LengthOfStay restriction, or only the MealsIncluded 
element, for example). In particular, if some value needs to be updated in a Rate that AlpineBits requires 
to be the same over the whole rate plan, such as UnitMultiplier, Type or MealsIncluded the whole rate 
plan must be sent again, since only updating one rate would break the assumption that these values 
must be the same for every rate.

That being said, there is the special case of rate plan messages that contain a UniqueID element with 
attribute Instance set to CompleteSet.

In this case a client indicates it wishes to initiate sending the complete list of its rate plans. The server 
must then consider expired all rate plans it has on record that are not contained in the current 
message (hint: delete them). In that case, the RatePlan element will not have any RatePlanNotifType 
and no child elements must be present (the RatePlanCode must of course be present).

Also regarding the CompleteSet case, if the client wishes to reset all rate plans for a given hotel it can 
send a single empty RatePlan element (sending no RatePlan element at all would violate OTA 
validation).

AlpineBits 2015-07b page 61 of 71



Regarding these synchronization mechanisms, a server must support everything except 
RatePlanNotifType = Overlay. A server must set the corresponding capability if it does.

In order to limit the amount of transferred data and processing time, the following rules and 
recommendations must be taken into account:

● RatePlanNotifType = New
Complete RatePlans must be transmitted one at a time.

● RatePlanNotifType = Overlay
Updates to more than one RatePlan may be bundled into a single request. However, care should 
be taken to keep the data size within reasonable bounds. In case of doubt, the updates should be 
transmitted for one RatePlan at a time.

4.5.4. Server response

The server will send a response indicating the outcome of the request. The response is an 
OTA_HotelRatePlanNotifRS document. Four types of outcome are possible: success, advisory, warning 
or error.

Success

The request was accepted and processed successfully. The client does not need to take any further 
action.

In this case the OTA_HotelRatePlanNotifRS response contains nothing but a single, empty Success 
element:

<?xml version="1.0" encoding="UTF-8"?>

<OTA_HotelRatePlanNotifRS
    xmlns="http://www.opentravel.org/OTA/2003/05"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_HotelRatePlanNotifRS.xsd"
    Version="3.14">

    <Success/>

</OTA_HotelRatePlanNotifRS>

samples/RatePlans-OTA_HotelRatePlanNotifRS-success.xml

Advisory

The request was accepted and processed successfully. However, one or more non-fatal problems were 
detected and added to the server response. The client does not need to resend the request, but must 
notify the user or the client implementer regarding the advisory received.

In this case, the OTA_HotelRatePlanNotifRS response contains an empty Success element followed by 
one or more Warning elements with the attribute Type set to the fixed value 11, meaning “Advisory” 
according to the OTA list “Error Warning Type” (EWT).

AlpineBits 2015-07b page 62 of 71



Each Warning element should contain a human readable text as in the following example:

<OTA_HotelRatePlanNotifRS
    xmlns="http://www.opentravel.org/OTA/2003/05"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_HotelRatePlanNotifRS.xsd"
    Version="3.14">

    <Success/>
    <Warnings>
        <Warning Type="11">
            end date is less than 3 days from now
        </Warning>
    </Warnings>

</OTA_HotelRatePlanNotifRS>

samples/RatePlans-OTA_HotelRatePlanNotifRS-advisory.xml

Warning

The request could not be accepted or processed successfully.

The client must take action: it may try to resend the message if it has reason to assume the warning is 
transient and occurred for the first time, otherwise it must escalate the problem to the user or client 
implementer.

In this case, the OTA_HotelRatePlanNotifRS response contains an empty Success element followed by 
one or more Warning elements with the attribute Type set to any value allowed by the OTA list “Error 
Warning Type” (EWT) other than 11 (“Advisory”).

Each Warning element should contain a human readable text as in the following example:

<OTA_HotelRatePlanNotifRS
    xmlns="http://www.opentravel.org/OTA/2003/05"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_HotelRatePlanNotifRS.xsd"
    Version="3.14">

    <Success/>
    <Warnings>
        <Warning Type="3">
            dates are too far in the future for this server to process
        </Warning>
    </Warnings>

</OTA_HotelRatePlanNotifRS>

samples/RatePlans-OTA_HotelRatePlanNotifRS-warning.xml

Error

The request could not be accepted or processed successfully.

The client must take action: it may try to resend the message if it has reason to assume the error is 
transient and occurred for the first time, otherwise it must escalate the problem to the user or client 
implementer.

AlpineBits 2015-07b page 63 of 71



In this case, the OTA_HotelAvailNotifRS response contains one or more Error elements with the 
attribute Type set to the fixed value of 13, meaning “Application error” according to the OTA list “Error 
Warning Type” (EWT) and the attribute Code set to any value present in the OTA list “Error Codes” 
(ERR). 

<OTA_HotelRatePlanNotifRS
    xmlns="http://www.opentravel.org/OTA/2003/05"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_HotelRatePlanNotifRS.xsd"
    Version="3.14">

    <Errors>
        <Error Type="13" Code="404">
            Invalid start/end date combination
        </Error>
    </Errors>

</OTA_HotelRatePlanNotifRS>

samples/RatePlans-OTA_HotelRatePlanNotifRS-error.xml

4.5.4. Implementation tips and best practice

Synchronization tip.

A server, before declaring support for the capability 
OTA_HotelRatePlanNotif_accept_RatePlan_mixed_BookingRule must ensure that an update 
to a generic booking rule has no impact on existing specific rules.

About Supplements.

AlpineBits supplements allow for the following use cases:

● exchange of included, mandatory or optional supplements
● exchange of multi-language descriptions of supplements with title and short text (“intro”)
● exchange of date depending prices
● examples: cleaning fees, parking, New Year's Eve dinner

AlpineBits supplements don’t currently allow for the following use cases (these will be addressed in a 
future release of AlpineBits, therefore it's possible that substantial modifications will be made):

● supplements available 
● exchange of images
● categorization of supplements

Other things to note about supplements:

● AlpineBits does not allow the child elements  RoomCompanions or PrerequisiteInventory
● a rate plan must describe any local taxes and fees in its description (as opposed to giving them 

as a supplement). The rationale behind this is that a portal does not have enough information to 
decide whether these local taxes and fees apply to a given booking request or not

AlpineBits 2015-07b page 64 of 71



Reference Implementation.

A reference implementation for the computation of the cost of a stay is available at 
https://development.alpinebits.org/#/rtapp. This implementation can be used manually (by using the 
website) or automatically (by sending data to a web service). The implementation can also be run from 
the command line, source code is available.

Please let the AlpineBits Alliance know if you find a discrepancy between this document and the 
reference implementation.

If there is a discrepancy the following rules can be used to solve it:
● if the document is clear, the document prevails,
● if the document is ambiguous, the reference implementation prevails.

AlpineBits 2015-07b page 65 of 71

https://development.alpinebits.org/#/rtapp


A. AlpineBits developer resources

The AlpineBits development home page is at http://www.alpinebits.org/developers/. There are resources 
linked from that page that help test one’s implementation.

Public repositories with schema files and example code snippets are available online at 
https://github.com/alpinebits/. Contributions are welcome (any programming language).

AlpineBits 2015-07b page 66 of 71

https://github.com/alpinebits/
http://www.alpinebits.org/developers/


B. Protocol Version Compatibility

B.1. Minor updates in version 2015-07b

Version 2015-07b is a maintenance release. The section 4.5 about rate plans has been mostly rewritten 
with more precise and strict information about how to handle corner cases, especially regarding rebates.

While most of this does not lead to breaking changes per se, it is likely that 2015-07 servers that were 
implemented before the release of 2015-07b would compute costs for stays differently, for lack of a 
sufficiently strict description of details.

One deliberate breaking change of note is that 2015-07b requests the value of the AmountAfterTax 
attribute in BaseByGuestAmt elements to be > 0, while 2015-07 used to allow a value ≥ 0.

B.2. Major overhaul in version 2015-07

Inventory

In version 2015-07 the Inventory message was changed from OTA_HotelInvNotif to 
OTA_HotelDescriptiveContentNotif. The new message offers the same options as the one used 
previously beside sending the name of the specific rooms, but allows for much richer descriptions, 
including pictures. A high-level mapping between the old Inventory and the new one is as follows:

OTA_HotelInvNotif OTA_HotelDescriptiveContentNotif

SellableProduct GuestRoom

SellableProduct InvTypeCode GuestRoom Code

SellableProduct InvCode TypeRoom RoomID

Quantities MaximumAdditionalGuests Not needed anymore, see StandardOccupancy

Occupancy MinOccupancy GuestRoom MinOccupancy

Occupancy MaxOccupancy GuestRoom MaxOccupancy

Occupancy AgeQualifyingCode="8" GuestRoom MaxChildOccupancy

Not previously possible TypeRoom StandardOccupancy

Room RoomClassificationCode TypeRoom RoomClassificationCode

Amenity AmenityCode Amenity RoomAmenityCode

Text TextItem > Description

Not previously possible ImageItem > URL

Text (for specific Room) Not possible anymore

AlpineBits 2015-07b page 67 of 71



B.3. Major overhaul in version 2014-04

Version 2014-04 was a major overhaul. In most cases, a pre-2014-04 client will not be compatible with a 
2014-04 server and viceversa. Here is a list of major changes in 2014-04.

HTTPS layer

The possibility of compression with gzip has been added.

FreeRooms

The possibility to send booking restrictions in FreeRooms has been removed as have the corresponding 
capabilities. These are better handled by the new RatePlans.

The value of the action parameter has been changed from FreeRooms to 
OTA_HotelAvailNotif:FreeRooms for uniformity with the other action values that all follow the 
rootElement:actionValue format.

The possible responses (OTA_HotelAvailNotifRS document) have been re-categorized into four classes: 
success, advisory (new), warning and error. For error responses the attributes have changed, fixing a 
bad OTA interpretation.

Finally, the way deltas and complete transmissions are distinguished has changed.
All in all FreeRooms are not compatible with any previous version.

GuestRequests

GuestRequests have been heavily refactored. Previous AlpineBits versions had two type of requests: 
quotes and booking requests, the current version has three: booking reservations, quote requests and 
booking cancellations. Also, the client can (and must) now send acknowledgements.

SimplePackages

The possible responses (OTA_HotelRatePlanNotifRS document) have been re-categorized into four 
classes: success, advisory (new), warning and error. For error responses the attributes have changed, 
fixing a bad OTA interpretation.

Inventory and RatePlans

These are new message types introduced with version 2014-04.

B.4. Compatibility between a 2012-05b client and a 2013-04 server

Housekeeping

The client will not send the X-AlpineBits-ClientID field in the HTTP header, since it is not aware of this 
feature. This will cause authentication problems with those 2013-04 servers that require an ID.
AlpineBits 2015-07b page 68 of 71



The client will not send the X-AlpineBits-ClientProtocolVersion field in the HTTP header, since it is not 
aware of this feature. This is no problem: a server that is interested in this, will simply recognize the 
client as preceding protocol version 2013-04.

If the client checks the server version it will see 2013-04 - a version it doesn’t recognize. Likewise, if the 
client checks the capabilities it might see the OTA_HotelAvailNotif_accept_deltas capability. 
Client implementers interested to have their 2012-05b client talk to a 2013-04 server should verify this is 
not a problem for their client software.

FreeRooms

There is no compatibility problem in the request part: the client will not send partial information (deltas), 
since it is simply not aware of the existence of the feature.
Please be aware that the lack of this feature (obviously) causes more data to be sent to the server, 
something not all companies that run servers will be happy with.
The server response might contain a Warning element the client cannot process. If the client - as it 
should - carefully parses the response, it will treat this as an error situation and act accordingly. So 
basically the client is expected to treat the warnings as error, which might be an issue and this should be 
tested

GuestRequests

No compatibility problems are expected.

SimplePackages

2013-04 introduced the limitation that all packages sent within a single request must refer to the same 
hotel. An older client not aware of this limit might incur an error returned from the server error.

Similar to the FreeRooms case, the server response might contain a Warning element the client cannot 
process. If the client - as it should - carefully parses the response, it will treat this as an error situation 
and act accordingly. So basically the client is expected to treat the warnings as an error, which might be 
an issue and should be tested for.

B.5. Compatibility between a 2013-04 client and a 2012-05b server

Housekeeping

The client sends the X-AlpineBits-ClientProtocolVersion field and may send the X-AlpineBits-ClientID 
field in the HTTP header, but the server will just ignore it - being unaware of the feature.
If the client checks the server version and/or checks the capabilities - as it should - it will note the 
missing features and not use them.
Hence, technically there is no problem with this combination.

FreeRooms

The client will not send partial information (deltas), since the server does not export the 
OTA_HotelAvailNotif_accept_deltas capability.
The server will never send a response with a Warning element. This is not a problem for the client.

GuestRequests

AlpineBits 2015-07b page 69 of 71



In 2013-04 the form of the ID attribute is not any more restricted. It has become a free text field. An older 
server might insist on the old form and throw an error.

SimplePackages

The server will never send a response with a Warning element. This is not a problem for the client.

AlpineBits 2015-07b page 70 of 71



C. Links

[0] Creative Commons BY ND license:
http://creativecommons.org/licenses/by-nd/3.0/

[1] HTTP basic access authentication:
http://en.wikipedia.org/wiki/Basic_access_authentication

[2] OpenTravel Alliance:
http://www.opentravel.org/

[3] OTA2015A documentation package download:
http://www.opentravel.org/Specifications/ReleaseNotes.aspx?spec=2015A

[4] OTA2015A XML schema files online:
http://www.opentravel.org/Specifications/SchemaIndex.aspx?FolderName=2015A

[5] browsable interface to the above schema files:
http://adriatic.pilotfish-net.com/ota-modelviewer/

AlpineBits 2015-07b page 71 of 71

http://en.wikipedia.org/wiki/Basic_access_authentication
http://adriatic.pilotfish-net.com/ota-modelviewer/
http://www.opentravel.org/Specifications/SchemaIndex.aspx?FolderName=2015A
http://www.opentravel.org/Specifications/ReleaseNotes.aspx?spec=2015A
http://www.opentravel.org/
http://creativecommons.org/licenses/by-nd/3.0/

	1. Introduction
	2. The HTTPS request and response structure
	2.1. Implementation tips and best practice

	3. Housekeeping actions
	3.1. Query the server version
	3.2. Query the server capabilities
	3.3. Unknown or missing actions
	3.4. Implementation tips and best practice

	4. Data exchange actions
	4.1. FreeRooms: room availability notifications
	4.1.1 Client request
	4.1.2. Server response
	Success
	Advisory
	Warning
	Error

	4.1.3. Implementation tips and best practice

	4.2. GuestRequests: quote requests, booking reservations and cancellations
	4.2.1. First client request
	4.2.2 Server response
	Error
	Success

	4.2.3. Follow-up client request (acknowledgement)
	4.2.4. Follow-up server response
	4.2.5. Implementation tips and best practice

	4.3. SimplePackages: package availability notifications
	4.3.1. Client Request (notify package availability)
	4.3.2. Client request (notify that a package is no longer available)
	4.3.3. Server response
	Success
	Advisory
	Warning
	Error

	4.3.4. Implementation tips and best practice

	4.4. Inventory: room category information
	4.4.1. Client request
	Basic and additional descriptive content

	4.4.2. Server response
	Success
	Advisory
	Warning
	Error

	4.4.3. Implementation tips and best practice

	4.5. RatePlans
	4.5.1. Client request
	Booking rules
	Rates
	Supplements
	Offers

	4.5.2. Computing the cost of a stay
	Step 1 (occupancy check)
	Step 2 (transformation)
	Step 3 (family offers)
	Step 4a (restrictions check)
	Step 4b (compute cost)

	4.5.3. Synchronization
	4.5.4. Server response
	Success
	Advisory
	Warning
	Error

	4.5.4. Implementation tips and best practice


	A. AlpineBits developer resources
	B. Protocol Version Compatibility
	B.1. Minor updates in version 2015-07b
	B.2. Major overhaul in version 2015-07
	Inventory

	B.3. Major overhaul in version 2014-04
	HTTPS layer
	FreeRooms
	GuestRequests
	SimplePackages
	Inventory and RatePlans

	B.4. Compatibility between a 2012-05b client and a 2013-04 server
	B.5. Compatibility between a 2013-04 client and a 2012-05b server

	C. Links

